Oriental motor

The Stepping Motor and Driver Package CRK Series

Built-In Controller Type (RS-485 Communication)

24 VDC Microstep Drive

The 5 phase stepping motor and driver package CRK Series, designed for low vibration and low noise, now comes with a built-in controller function.

The new CRK series can also be controlled from a host controller via RS-485 communication in addition to I/O control. Additionally, new encoder motors are now available that enables the monitoring of positioning information.

This 5-phase DC-input stepping motor and driver package adopts a microstep drive technology. The driver incorporates the stored-data type controller function.

The motor and driver package comes with an encoder motor that allows position information to be monitored.

Either I/O control or RS-485 communication can be selected for the purpose of controlling the motor.

Compact Driver with Built-in Controller Function

Space Saving and Reduced Wiring

As no pulse generator is needed and employing a compact design for its driver, it is easier to design your equipment with a smaller space and achieve a simpler system.

Three Operating Patterns

Positioning Operation

Set the desired motor operating speed or travel amount for each operating data, select a given operating data, and operate the motor according to the selected operating data.

◇Linked Motion

If "Linked Motion" is set for the target operating data, consecutive positioning operations can be performed based on the current data and subsequent data numbers that follow, simply by inputting the START signal just once.

[Linked Motion]

No. 01

CCW

Data No. 02 If data No. 01 is selected, positioning will be performed continuously for No. 01 to 03 without stopping the motor.

Select data No. 01 and input the START signal, and the motor will perform the operation specified by data No. 01. Thereafter, the motor will stop for the dwell time* you have set, and will then perform the operations specified by data No. 02 and No. 03. You can also link operating data of different rotating directions.

*The dwell time refers to the time the motor waits before it starts the next positioning operation.

\Diamond Sequential Operation

When "sequential positioning" of operating data is set to "enable", positioning operation is performed to the next operation every time a START input signal is given.

Data

No. 03

Oup to 63 Points of Operating Data

Up to 63 points of positioning data can be set in the driver. The desired data can be set in the incremental mode (relative distance specification) or absolute mode (absolute position specification) separately for each data.

 Operating data can be set using the control module OPX-2A (sold separately), the data setting software MEXEO2 (sold separately) or RS-485 communication.

•Speed Control Operation

The motor operates continuously while the FWD or RVS input is ON. Because the motor operates according to the speed that is pre-set under each operation data number, you can perform an operation where the motor changes its speed to multiple levels, simply by changing the data number sequentially.

Return-to-Home Operation

The product comes with a return-to-home operation function, meaning that home detection can easily be performed by wiring a sensor.

Detection of Deviation Error (New encoder motors now available)

With the use of an encoder motor, a position displacement, etc., can be detected. This will contribute to the further improvement of your equipment's reliability.

STEPOUT Output Function

Once the deviation between the position specified by the command from the driver and the value of the encoder counter reaches the set value (for deviation error), the STEPOUT signal will output. Accordingly, a position displacement resulting from a sudden change in the load can be detected.

Alarm Output Function*

When a deviation error occurs, the "Overflow" alarm will be triggered and the motor will stop.

Warning Output Function*

When a deviation error occurs, the "Overflow" warning will be triggered but the motor will continue its operation.

*You can set whether to output an alarm or a warning upon the generation of a deviation error, using a parameter.

Application Example

The motor can detect a situation in which the door could not be operated to the normal position due to an obstruction, etc.

Useful Function

PLS-OUT Output Function

♦ Synchronized Operations

It is possible to output signals of the same number of pulses and same pulse speed as the command value. Accordingly, you can input the PLS-OUT signal and DIR-OUT signal (rotating-direction signal) to other drivers in order to drive the motors of different axes.

◇Position Counting Function

You can count the number of signals that were output in order to check the command position instructed to the motor.

Group Sending Function (RS-485 communication only)

Multiple axes can be linked via RS-485 communication to create a group, so that commands can be sent simultaneously to all axes comprising the group. You can also start these multiple axes at the same time or to perform the same operation.

Operating Command	Start of Positioning Operation at Address 0	
(RS-485 communication		
Motor Operation at Address 0		
(Master axis)		
Motor Operation at Address 1		
(Slave axis)	/	
Motor Operation at Address 2 (Slave axis)		

Teaching Function

You can perform teaching using the control module OPX-2A (sold separately) or data setting software MEXEO2 (sold separately). Move the table to the desired position and store the applicable position data as positioning data.

Specifications and Characteristics

List of Motor and Driver Combinations

Connection and Operation

System Configuration

Product Line

Dimensions

Accessories Installation

2 8

9

10

27

34

42 43

61

Lower Vibration and Noise Achieved by Microstepping

The basic step angle of the motor can be divided into a maximum of 250 microstep angles without using any mechanical element such as a reduction gear.

As a result, vibration and noise are further reduced.

High-Accuracy and High-Torque Motor

High-Resolution Motor

Improved Stopping Accuracy

The positioning accuracy of a stepping motor is affected by the friction of the load.

The high-resolution type achieves high accuracy and reliability based on Oriental Motor's latest precision machining technology. The motor resolution is increased to double the level of a standard model to reduce the displacement angle against load torque, thereby achieve high positioning accuracy. Vibration is also reduced.

Stop Position Accuracy of 2 Arc Minutes (No load) The high-resolution type is designed with a stop position accuracy of 2 arc minutes (0.034°) [standard type: 3 arc minutes (0.05°)]. The reduced error helps improve the positioning accuracy of your equipment.

Compact Driver for Installation on DIN Rail

Compact, Case-Type Driver of DC Power Supply Input

The driver has been designed with a compact size of 35 mm in width, 100 mm in height and 70 mm in depth. These dimensions will save space for your control panel and equipment.

Smooth Drive Function for Enhanced Ease of Use

The Smooth Drive Function automatically controls operations via microstepping at the same travel amount and speed used in the fullstep mode, without requiring the operator to change the pulse input settings.

High-Torque Motor

The high-resolution type and high-torque type adopt a newly designed high-torque motor that widens the range of applications.The smaller motor allows for compact equipment design.The motor current is reduced to suppress heat generation.

Example: Avoidance of temperature rise in precision equipment or machinery

Installable on DIN Rail

The driver can be installed directly onto a DIN rail, with no mounting screws needed.

The new CRK series can be controlled from a host controller via I/O control and RS-485 communication.

I/O Control System

Operation is easy via I/O control.

•RS-485 Communication System

You can set operating data and parameters or input operation commands via RS-485 communication. Up to 31 drivers can be connected to one host controller. You can also start multiple axes at the same time.

The Modbus RTU protocol is supported, so each driver can be connected with ease using a programmable controller.

\diamondsuit Data Setting and Operating Command

Operating Data and	Operating Commands
Parameter Setting	(START, STOP, etc)
Control Module	I/O
(OPX-2A), Data Editing	or
Software (MEXEO2) or	RS-485
RS-485 Communication	Communication

• The START input, STOP input, FWD input, RVS input and other operating commands can also be controlled via I/Os.

 The teaching function and test function can be implemented with the control module (OPX-2A) or the data setting software (MEXEO2).

Wide Variety

The **CRK** Series comes in four frame sizes of 20 to 60 mm, as well as three geared types.

	Туре	Features	□20 mm	□28 mm (□30 mm)	□42 mm	□60 mm	Driver
High-Resolution Type A high-torquioffering high positioning a with the basis set to 0.36%; the basic ste the standard		A high-torque motor offering higher positioning accuracy with the basic step angle set to 0.36°/step, or half the basic step angle of the standard type.		5			
High-Torque Type		A high-torque motor generating high torque of approx. 1.3 to 1.5 times the level achieved by the standard type.					
High-Torque Type with Encoder		The high-torque motor comes pre-assembled with an encoder. This combination enhances reliability.					
Standard Type		The basic model in the CRK Series offering an optimal balance of torque, low vibration and low noise.					
Standard Type with Electromagnetic Brake		A motor combines with power-off activated type electromagnetic brake.					
Standard Type with Encoder		The standard motor comes pre-assembled with an encoder. This combination enhances reliability.				0	
TH Geared Type A geared motor achieving both low backlash and low cost.			0	O			
PN Geared Type		A high-accuracy geared motor achieving a backlash of 3 arc minutes or less. It also provides high strength and wide gear ratios.		2			
Non-Be	Harmonic Geared Type	A high-accuracy, backlash-free geared motor adopting a newly developed harmonic gear. It ensures high strength in a compact body.	0	9			

Characteristics Comparison for Geared Motors

Geared Type		Features	Permissible Torque/ Maximum Torque [N·m]	Backlash [arc min]	Basic Resolution [deg/step]	Output Shaft Speed [r/min]	
Low Backlash	TH Geared (Parallel shaft)	 A wide variety of low gear ratios for high-speed operation Gear ratios: 1:3.6, 1:7.2, 1:10, 1:20, 1:30 	4	60	0.024	500	
acklash	PN Geared (Planetary gear)	 High speed (low gear ratios), high accuracy positioning High permissible/maximum torque A wide variety of gear ratios for selecting the desired step angle Centered output shaft Gear ratios: 1:5, 1:7.2, 1:10, 1:25, 1:36, 1:50 	Permissible Maximum Torque Torque 8 20	3	0.0144	600	
Non-B	Harmonic Geared (Harmonic drive)	 High accuracy positioning High permissible/maximum torque High gear ratios, high resolution Centered output shaft Gear ratios: 1:50, 1:100 	Permissible Maximum Torque Torque 8 28	0	0.0072	70	

Note:

• The values shown above must be used as reference. The actual values vary depending on the motor frame size and gear ratio.

Linear Actuators

The driver can also be combined with a linear-motion motor, in which the motor employs a built-in thrust bearing mechanism with a ball screw incorporated.

For details, please contact the nearest Oriental Motor sales office.

RoHS RoHS-Compliant

The **CRK** Series conforms to the RoHS Directive, which prohibits the use of six chemical substances including lead and cadmium.

RoHS (Restriction of Hazardous Substances) Directive:

Directive on restriction of the use of certain hazardous substances in electrical and electronic equipment (2002/95/EC).

The RoHS Directive prohibits the use of six chemical substances in electrical and electronic products sold in the EU member states. The six controlled substances are: lead, hexavalent chromium, cadmium, mercury and two specific brominated flame-retardants (PBB and PBDE).

CE Marking

The CE marking certifies compliance with the EMC Directive.
 The EMC value changes according to the wiring and layout. Therefore, the final EMC level must be checked with the motor/driver incorporated in the equipment.

System Configuration

I/O Control or RS-485 Communication

*Required for the operation of I/O control.

No.	Product Name	Overview	Page
1	Control Module	With this control module, various data setting, editing, operating, and digital display are possible. Communication cable of 0.5 m is included.	43
2	Data Editing Software	With this software, various data setting, editing, operating, and digital display are possible on a personal computer. PC interface cable of 5 m and USB cable of 0.5 m are included.	43
3	Motor Mounting Brackets	Dedicated mounting bracket for the motor.	46
4	Flexible Couplings	Coupling that connects the motor shaft to the driven shaft.	48
5	Clean Dampers	Dedicated damper for suppressing stepping motor vibration.	60
6	Extension Cables	Cable for extending the wiring distance between the motor and driver.	45
7	Lead Wire/Connector Assembly (For encoder connection)	Lead wire with a connector crimped for connector-coupled motors (0.6 m).	44

•Example of System Configuration

CRK Series	+	Control Module	Extension Cable [5 m]	Motor Mounting Bracket	Flexible Coupling	Clean Damper
CRK566BKD		OPX-2A	CC05PK5	PAL2P-5	MC250808S	D6CL-8.0F

The system configuration shown above is an example. Other combinations are available.

Product Number Code

•High-Resolution Type, High-Torque Type, High-Torque Type with Encoder, Standard Type, Standard Type with Electromagnetic Brake, Standard Type with Encoder

$\begin{array}{c} \mathbf{CRK} 5 2 3 H P M A \Box K D \\ \hline 0 0 0 0 6 6 0 0 0 \\ \hline \end{array}$

(1) (2) (3) (4)						
1	Series	CRK: CRK Series					
2	5: 5-Phase						
3	Motor Frame Size	1: 20 mm 2: 28 mm 4: 42 mm 6: 60 mm					
4	Motor Case Length						
5	Motor Specification	H: High Speed (0.75 A/phase)					
6	Motor Classification						
0	Motor Type	M: High Resolution					
8	Motor Shaft Type	A: Single Shaft, B: Double Shaft, R: With Encoder					
	Blank: Without Electromagnetic Brake,						
9	Electroniagrietic Drake	M: With Electromagnetic Brake Type					
10	Power Supply Input	K: 24 VDC					
11	Driver Type	D: Built-In Controller Type					

Product Line

High-Resolution Type

-	
Model (Single shaft)	Model (Double shaft)
CRK523PMAKD	CRK523PMBKD
CRK524PMAKD	CRK524PMBKD
CRK525PMAKD	CRK525PMBKD
CRK523HPMAKD	CRK523HPMBKD
CRK524HPMAKD	CRK524HPMBKD
CRK525HPMAKD	CRK525HPMBKD
CRK544PMAKD	CRK544PMBKD
CRK546PMAKD	CRK546PMBKD
CRK564PMAKD	CRK564PMBKD
CRK566PMAKD	CRK566PMBKD
CRK569PMAKD	CRK569PMBKD

High-Torque Type

Model (Single shaft)	Model (Double shaft)
CRK513PAKD	CRK513PBKD
CRK523PAKD	CRK523PBKD
CRK525PAKD	CRK525PBKD
CRK523HPAKD	CRK523HPBKD
CRK525HPAKD	CRK525HPBKD
CRK544PAKD	CRK544PBKD
CRK546PAKD	CRK546PBKD

High-Torque Type with Encoder
 Model (Single shaft)
 CRK544PRKD
 CRK546PRKD

Standard Type

Model (Single shaft)	Model (Double shaft)
CRK543AKD	CRK543BKD
CRK544AKD	CRK544BKD
CRK545AKD	CRK545BKD
CRK564AKD	CRK564BKD
CRK566AKD	CRK566BKD
CRK569AKD	CRK569BKD
	·

Standard Type with	Standard Type with
Electromagnetic Brake	Encoder
Model (Single shaft)	Model (Single shaft)
CRK543AMKD	CRK543RKD
CRK544AMKD	CRK544RKD
CRK545AMKD	CRK545RKD
CRK564AMKD	CRK564RKD
CRK566AMKD	CRK566RKD
CRK569AMKD	CRK569RKD

C	RK	5	2	3	Ρ	A	Κ	D	- 1	Ν	7	.2	
(D	2	3	4	5	6	7	8	(9	(10	
1	Series				CRK	CRK	Series						
2	5: 5-Phase												
3	Motor I	Frame	Size		1: 20 mm 2: 28 mm (30 mm) 4: 42 mm 6: 60 mm							ım	
4	Motor (ength											
5	Motor (Classif	ication										
6	Motor S	Shaft T	уре		A: Sir	ngle Sh	aft, B :	Double	Shaft				
0	Power Supply Input K: 24 VDC												
8	Driver Type D: Built-In Controller Type												
9	Gearhe	ad Typ	e T:T	H Gea	red Typ	oe, N : I	PN Ge	ared Typ	oe, H : I	Harmo	onic G	eared Typ	Je
10	Gear R	atio											

•TH Geared Type

Geared Type

Model (Single shaft)	Model (Double shaft)
CRK523PAKD-T7.2	CRK523PBKD-T7.2
CRK523PAKD-T10	CRK523PBKD-T10
CRK523PAKD-T20	CRK523PBKD-T20
CRK523PAKD-T30	CRK523PBKD-T30
CRK543AKD-T3.6	CRK543BKD-T3.6
CRK543AKD-T7.2	CRK543BKD-T7.2
CRK543AKD-T10	CRK543BKD-T10
CRK543AKD-T20	CRK543BKD-T20
CRK543AKD-T30	CRK543BKD-T30
CRK564AKD-T3.6	CRK564BKD-T3.6
CRK564AKD-T7.2	CRK564BKD-T7.2
CRK564AKD-T10	CRK564BKD-T10
CRK564AKD-T20	CRK564BKD-T20
CRK564AKD-T30	CRK564BKD-T30
PN Geared Type	
Model (Single shaft)	Model (Double shaft)
CRK523PAKD-N5	CRK523PBKD-N5
CRK523PAKD-N7.2	CRK523PBKD-N7.2
CRK523PAKD-N10	CRK523PBKD-N10
CRK544AKD-N5	CRK544BKD-N5
CRK544AKD-N7.2	CRK544BKD-N7.2
CRK544AKD-N10	CRK544BKD-N10
CRK566AKD-N5	CRK566BKD-N5
CRK566AKD-N7.2	CRK566BKD-N7.2
CRK566AKD-N10	CRK566BKD-N10
CRK564AKD-N25	CRK564BKD-N25
CRK564AKD-N36	CRK564BKD-N36
CRK564AKD-N50	CRK564BKD-N50
Harmonic Geared	І Туре
Model (Single shaft)	Model (Double shaft)
CRK513PAKD-H50	CRK513PBKD-H50
CRK513PAKD-H100	CRK513PBKD-H100
CRK523PAKD-H50	CRK523PBKD-H50
CRK523PAKD-H100	CRK523PBKD-H100
Model (Single shaft)	Model (Double shaft)
CRK543AKD-H50	CRK543BKD-H50
CRK543AKD-H100	CRK543BKD-H100
CRK564AKD-H50	CRK564BKD-H50
CRK564AKD-H100	CRK564BKD-H100
The following items are	included in each product.
Motor, Driver, Power co	nnector, Cable/connector
Lead wire/connector as	sembly for CN4, Varistor *
assembly for CN5 *2, Le	ead wire/connector assem
Operating Manual	
*1 Electrical magnetic	brake type only

*2 Encoder type only

*3 Connector-coupled motor type only

High-Resolution Type Motor Frame Size 28 mm

Specifications (RoHS)

[\square								
Madal	Single Shaft	CRK523PMAKD*	CRK524PMAKD*	CRK525PMAKD*	CRK523HPMAKD*	CRK524HPMAKD*	CRK525HPMAKD*		
Wodel	Double Shaft	CRK523PMBKD*	CRK524PMBKD*	CRK525PMBKD*	CRK523HPMBKD*	CRK524HPMBKD*	CRK525HPMBKD*		
Maximum Holding Torque	N∙m	0.042	0.061	0.09	0.038	0.061	0.081		
Rotor Inertial Moment	J: kg∙m²	9×10 ⁻⁷	13×10 ⁻⁷	19×10 ⁻⁷	9×10 ⁻⁷	13×10 ⁻⁷	19×10 ⁻⁷		
Rated Current	A/Phase		0.35			0.75			
Basic Step Angle				0.3	36°				
Power Supply Input			24 VDC±10% 0.7 A			24 VDC±10% 1.4 A			
Excitation Mode				Micro	ostep				
Maga	Motor kg	0.11	0.15	0.2	0.11	0.15	0.2		
WId55	Driver kg		0.2						
Dimension No.	Motor			[2				
	Driver	22							

((

How to read specifications table -> See below

*Motor lead wire/connector assembly (0.6 m) is included with the connector-coupled motor and driver package.

Notes:

How to Read Specifications Table

Maximum Holding Torque	: The holding torque (5-phase: 5-phase excitation) is the maximum holding power (torque) the stepping motor has when power (rated current) is being supplied but the motor is not rotating (with consideration given to the permissible strength of the gear when applicable). At motor standstill, the driver's automatic current cutback function reduces the maximum holding torque by approximately 50%.
Permissible Torque	: The permissible torque represents the torque value limited by the mechanical strength of the gear when operated at a constant speed. For the types excluding PN and harmonic geared types, the total torque including acceleration/deceleration torque should not exceed this value.
Maximum Torque	: This is the maximum torque that can be used instantaneously (for a short time). During acceleration/deceleration, the motor can be operated up to this value. (PN geared, harmonic geared type only)
Angular Transmission Error	: Angular transmission error is the difference between the theoretical angle of rotation of the output shaft, as calculated from the input pulse count, and actual angle of rotation. (PN geared type only)

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C.
 The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

High-Resolution Type Motor Frame Size 42 mm, 60 mm

Specifications (RoHS)

-							
Model	Single Shaft	CRK544PMAKD*	CRK546PMAKD*	CRK564PMAKD*	CRK566PMAKD*	CRK569PMAKD*	
Model	Double Shaft	CRK544PMBKD*	CRK546PMBKD*	CRK564PMBKD*	CRK566PMBKD*	CRK569PMBKD*	
Maximum Holding Torque	N∙m	0.24	0.42	0.78	1.3	2.3	
Rotor Inertial Moment	J: kg∙m²	60×10 ⁻⁷	121×10 ⁻⁷	310×10 ⁻⁷	490×10 ⁻⁷	970×10 ⁻⁷	
Rated Current	A/Phase	0.	0.75 1.4				
Basic Step Angle				0.36°			
Power Supply Input		24 VDC±1	0% 1.4 A		24 VDC±10% 2.5 A		
Excitation Mode				Microstep			
Maaa	Motor kg	0.3	0.5	0.65	0.87	1.5	
Wid55	Driver kg	0.2					
Dimension No.	Motor		3		4		
Dimension No.	Driver			22			

How to read specifications table → Page 10

*Motor lead wire/connector assembly (0.6 m) is included with the connector-coupled motor and driver package.

Speed - Torque Characteristics fs: Maximum Starting Frequency

Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C.
 The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

CE

High-Torque Type Motor Frame Size 20 mm, 28 mm

Specifications (RoHS)

•							
Madal	Single Shaft	CRK513PAKD*	CRK523PAKD*	CRK525PAKD*	CRK523HPAKD*	CRK525HPAKD*	
Model	Double Shaft	CRK513PBKD*	CRK523PBKD*	CRK525PBKD*	CRK523HPBKD*	CRK525HPBKD*	
Maximum Holding Torque	N∙m	0.0231	0.048	0.078	0.041	0.073	
Rotor Inertial Moment	J: kg∙m²	1.6×10 ⁻⁷	9×10 ⁻⁷	18×10 ⁻⁷	9×10 ⁻⁷	18×10 ⁻⁷	
Rated Current	A/Phase		0.35		0.	75	
Basic Step Angle				0.72°			
Power Supply Input			24 VDC±10% 0.7 A		24 VDC±1	0% 1.4 A	
Excitation Mode				Microstep			
Maga	Motor kg	0.05	0.11	0.2	0.11	0.2	
IVId55	Driver kg		0.2				
Dimension No.	Motor	1		[2		
	Driver		22				

CE

How to read specifications table → Page 10

*Motor lead wire/connector assembly (0.6 m) is included with the connector-coupled motor and driver package.

Speed - Torque Characteristics fs: Maximum Starting Frequency

Notes:

Pulse Speed [kHz]

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C.
 The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Pulse Speed [kHz]

High-Torque Type Motor Frame Size 42 mm

Specifications (RoHS)

Madal	Single Shaft	CRK544PAKD*	CRK546PAKD*			
wodel	Double Shaft	CRK544PBKD*	CRK546PBKD*			
Maximum Holding Torque	N∙m	0.24	0.42			
Rotor Inertial Moment	J: kg∙m²	57×10 ⁻⁷	114×10 ⁻⁷			
Rated Current	A/Phase	0.7	75			
Basic Step Angle		0.7	2°			
Power Supply Input		24 VDC±1	0% 1.4 A			
Excitation Mode		Micro	step			
Maaa	Motor kg	0.3	0.5			
IVIA55	Driver kg	0.2				
Dimension No.	Motor	3				
	Driver	22				

How to read specifications table → Page 10

*Motor lead wire/connector assembly (0.6 m) is included with the connector-coupled motor and driver package.

Speed - Torque Characteristics fs: Maximum Starting Frequency

Notes:

 Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C. •The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

High-Torque Type with Encoder Motor Frame Size 42 mm

Specifications (RoHS)

Modol	Single Sh	oft							
INIOUEI	Single Sin	all	CRKJ44PKKD	CRN340PRND					
Maximum Holding Torque		N∙m	0.24	0.42					
Rotor Inertial Moment	,	J: kg∙m²	57×10 ⁻⁷	114×10 ⁻⁷					
Rated Current		A/Phase	0.	75					
Basic Step Angle			0.1	72°					
Power Supply Input			24 VDC±1	24 VDC±10% 1.4 A					
Excitation Mode			Micro	ostep					
Maaa	Motor	kg	0.36	0.56					
IVId55	Driver	kg	0.2						
Dimension No.	Motor		5						
	Driver		22						
	L . D . 40								

CE

How to read specifications table → Page 10

*Motor lead wire/connector assembly (0.6 m) is included with the connector-coupled motor and driver package.

Speed - Torque Characteristics fs: Maximum Starting Frequency

Notes:

• Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C. (Keep the temperature of the encoder case under 80°C.)

•The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Standard Type Motor Frame Size 42 mm, 60 mm

Specifications (RoHS)

Model	Single Shaft	CRK543AKD	CRK544AKD	CRK545AKD	CRK564AKD	CRK566AKD	CRK569AKD
WOURI	Double Shaft	CRK543BKD	CRK544BKD	CRK545BKD	CRK564BKD	CRK566BKD	CRK569BKD
Maximum Holding Torque	N∙m	0.13	0.18	0.24	0.42	0.83	1.66
Rotor Inertial Moment	J: kg∙m²	35×10 ⁻⁷	54×10 ⁻⁷	68×10 ⁻⁷	175×10 ⁻⁷	280×10 ⁻⁷	560×10 ⁻⁷
Rated Current	A/Phase		0.75 1.4				
Basic Step Angle				0.7	72°		
Power Supply Input			24 VDC±10% 1.4 A			24 VDC±10% 2.5 A	
Excitation Mode				Micro	ostep		
Maga	Motor kg	0.25	0.3	0.4	0.6	0.8	1.3
Wass	Driver kg	(g 0.2					
Dimonsion No.	Motor		6			7	
	Driver		22				

How to read specifications table → Page 10

Speed - Torque Characteristics fs: Maximum Starting Frequency

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C. • The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

CE

Standard Type with Electromagnetic Brake Motor Frame Size 42 mm, 60 mm

Specifications (RoHS)

CE

Model	Si	ngle Shaft	CRK543AMKD	CRK543AMKD CRK544AMKD CRK545AMKD CRK564AMKD CRK566AMKD CRK5					
Maximum Holding	Torque	N∙m	0.13	0.18	0.24	0.42	0.83	1.66	
Rotor Inertial Mom	ent	J: kg⋅m ²	50×10 ⁻⁷	50×10 ⁻⁷ 69×10 ⁻⁷ 83×10 ⁻⁷ 335×10 ⁻⁷ 440×10 ⁻⁷ 720×1					
Rated Current		A/Phase		0.75			1.4		
Basic Step Angle					0.	72°			
Power Supply Inpu	ıt			24 VDC±10% 1.4 A			24 VDC±10% 2.5 A		
Excitation Mode				Microstep					
	Туре			Power Off Activated Type					
	Power Supply Ve	oltage			24 VD	C±5%			
Flasherman	Power Supply C	urrent A		0.08			0.25		
Electromagnetic	Static Friction To	orque N·m		0.22			0.8		
DIAKE	Brake Activate T	Time ms			2	0			
	Brake Release T	īime ms			3	0			
	Time Rating				Conti	nuous			
Maga	M	otor kg	0.37	0.42	0.52	0.9	1.1	1.6	
IVId55	Driver kg 0.2								
Dimonoion No	M	otor		8			9		
	Dr	river			2	2			

How to read specifications table → Page 10

Speed - Torque Characteristics fs: Maximum Starting Frequency

Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C.
 The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Standard Type with Encoder Motor Frame Size 42 mm, 60 mm

Specifications (RoHS)

Model			CRK543RKD	CRK543RKD CRK544RKD CRK545RKD CRK564RKD CRK566RKD CRK56					
Maximum Holding Torque		N∙m	0.13	0.18	0.24	0.42	0.83	1.66	
Rotor Inertial Moment		J: kg·m²	40×10 ⁻⁷	40×10 ⁻⁷ 59×10 ⁻⁷ 73×10 ⁻⁷			290×10 ⁻⁷	570×10 ⁻⁷	
Rated Current		A/Phase		0.75			1.4		
Basic Step Angle				0.72°					
Power Supply Input				24 VDC±10% 1.4 A			24 VDC±10% 2.5 A		
Excitation Mode					Micro	ostep			
Mass	Motor	kg	0.31	0.36	0.46	0.7	0.9	1.4	
IVIA55	Driver	kg	0.2						
Dimonsion No	Motor			10			11		
	Driver				2	22			

How to read specifications table → Page 10

0(0)

Notes:

(50)

10 (100)

Pulse Speed [kHz]

15 (150)

CRK543RKD CRK544RKD CRK545RKD Current: 0.75 A/Phase Step Angle: 0.72*/step Load Inertia: $J_L=34\times10^{-7}$ kg· m² Current: 0.75 A/Phase Step Angle: 0.72°/step Load Inertia: JL=34 $\times 10^{-7}$ kg+ m² Current: 0.75 A/Phase Step Angle: 0.72°/step Load Inertia: $J_L=34\times10^{-7}$ kg· m² 0.1 0.2 0.3 0.2 0.1 Torque [N· m] 0.2 Torque [N·m] Torque [N·m] 0.15 0.1 2 0.0 Current [A] 0.1 Current [A] A 0.05 1 Truct Input Current 0 1000 2500 500 1000 000 1500 Speed [r/min] Speed [r/min] Speed [r/min] 0(0) 0 (0) 10 (100) 30 (300) Resolution 1 (Resolution 10) Resolution 1 (Resolution 10) 0 (0) 10 (100) Resolution 1 (Resolution 10) 20 (200) 15 (150) 5 (50) 10 (100) 15 (150) 5 (50) Pulse Speed [kHz] Pulse Speed [kHz] Pulse Speed [kHz] CRK564RKD CRK566RKD CRK569RKD Current: 1.4 A/Phase Step Angle: 0.72*/step Load Inertia: JL=140×10 ⁷ kg• m² Current: 1.4 A/Phase Step Angle: 0.72^{*}/step Load Inertia: $J_L=140\times10^{-7}$ kg·m² Current: 1.4 A/Phase Step Angle: 0.72°/step Load Inertia: $J_L=140\times10^{-7}$ kg· m² 1.2 2.0 0.5 1.0 0.1 [m·N] Pullout Torque F Torque [N·m] Pullout Torque 0.3 Forque [N· 0.6 Torque Current [A] 0. Current [A] 2 A 0.5 Current 0.3 Driver Input Current er Input Cu ıt Cı rrent fs ٥ 1000 1500 2500 200 600 1000 100 300 400 500 200 Speed [r/min] Speed [r/min] Speed [r/min]

7.5 Resolution 1 (75) (Resolution 10) 0(0)

(10)

(20)

Pulse Speed [kHz]

(30)

Speed - Torque Characteristics fs: Maximum Starting Frequency

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C. (Keep the temperature of the encoder case under 80°C.)

2.5 (25) 5 (50) Pulse Speed [kHz]

0(0)

The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Resolution 1 (Resolution 10) 4 Resolution 1 (40) (Resolution 10)

CE

TH Geared Type Motor Frame Size 28 mm

Specifications (RoHS)

Madal	Single Shaft	CRK523PAKD-T7.2*	CRK523PAKD-T10*	CRK523PAKD-T20*	CRK523PAKD-T30*			
Woder	Double Shaft	CRK523PBKD-T7.2*	CRK523PBKD-T10*	CRK523PBKD-T20*	CRK523PBKD-T30*			
Maximum Holding Torque	N∙m	0.2	0.3	0.4	0.5			
Rotor Inertial Moment	J: kg∙m²		9×	10 ⁻⁷				
Rated Current	A/Phase		0.	35				
Basic Step Angle		0.1°	0.072°	0.036°	0.024°			
Gear Ratio		1:7.2	1:10	1:20	1:30			
Permissible Torque	N∙m	0.2	0.3	0.4	0.5			
Backlash	arc minute (degrees)		60	(1°)				
Permissible Speed Range	r/min	0~416	0~300	0~150	0~100			
Power Supply Input			24 VDC±1	0% 0.7 A				
Excitation Mode			Micr	ostep				
Maga	Motor kg	0.17						
Widss	Driver kg	0.2						
Dimension No.	Motor	12						
DIMENSION NO.	Driver							

How to read specifications table -> Page 10

*Motor lead wire/connector assembly (0.6 m) is included with the connector-coupled motor and driver package.

Note:

Direction of rotation of the motor and that of the gear output shaft are the opposite for the gear ratios 1:7.2 and 1:10. It is the same for 1:20 and 1:30 gear ratios.

Speed - Torque Characteristics fs: Maximum Starting Frequency

Resolution 1 (Resolution 10)

25 (250)

20 (200)

CRK523PAKD-T20/CRK523PBKD-T20

Current: 0.35 A/Phase Step Angle: 0.036°/step With Damper D4CL-5.0F: JL=34 × 10⁻⁷ kg· m

Driver Input Current

10 15 (100) (150)

5 (50) Permissible Torque

Speed [r/min]

Pulse Speed [kHz]

CRK523PAKD-T10/CRK523PBKD-T10

0.4

Current: 0.35 A/Phase Step Angle: 0.072°/step With Damper D4CL-5.0F: $J_L=34 \times 10^{-7}$ kg· m²

CE

Notes:

Contrent [A]

0.5

0.4

Έ 0.3

0(0)

1.0 0.2

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C.
 The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

TH Geared Type Motor Frame Size 42 mm

Specifications (RoHS)

-							
Model	Single Shaft	CRK543AKD-T3.6	CRK543AKD-T7.2	CRK543AKD-T10	CRK543AKD-T20	CRK543AKD-T30	
Model	Double Shaft	CRK543BKD-T3.6	CRK543BKD-T7.2	CRK543BKD-T10	CRK543BKD-T20	CRK543BKD-T30	
Maximum Holding Torque	N∙m	0.35	0.7	1	1	.5	
Rotor Inertial Moment	J: kg∙m²			35×10 ⁻⁷			
Rated Current	A/Phase			0.75			
Basic Step Angle		0.2°	0.1°	0.072°	0.036°	0.024°	
Gear Ratio		1:3.6	1:7.2	1:10	1:20	1:30	
Permissible Torque	N∙m	0.35	0.7	1	1.5		
Backlash	arc minute (degrees)	45 (0.75°)	25 (0	.417°)	15 (0.25°)	
Permissible Speed Range	r/min	0~500	0~250	0~180	0~90	0~60	
Power Supply Input				24 VDC±10% 1.4 A			
Excitation Mode				Microstep			
Maga	Motor kg			0.35			
Viass Driver kg 0.2							
Dimonsion No.	Motor			13			
	Driver			22			

How to read specifications table -> Page 10

Note:

• Direction of rotation of the motor and that of the gear output shaft are the same for the gear ratios 1:3.6, 1:7.2 and 1:10. It is the opposite for 1:20 and 1:30 gear ratios.

Speed - Torque Characteristics fs: Maximum Starting Frequency

CRK543AKD-T30/CRK543BKD-T30

Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C.
The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

CE

TH Geared Type Motor Frame Size 60 mm

Specifications (RoHS)

-								
Madal	Single Shaft	CRK564AKD-T3.6	CRK564AKD-T7.2	CRK564AKD-T10	CRK564AKD-T20	CRK564AKD-T30		
Model	Double Shaft	CRK564BKD-T3.6	CRK564BKD-T7.2	CRK564BKD-T10	CRK564BKD-T20	CRK564BKD-T30		
Maximum Holding Torque	N∙m	1.25	2.5	3	3.5	4		
Rotor Inertial Moment	J: kg⋅m²			175×10 ⁻⁷	′5×10 ⁻⁷			
Rated Current	A/Phase		1.4					
Basic Step Angle		0.2°	0.1°	0.072°	0.036°	0.024°		
Gear Ratio		1:3.6	1:7.2	1:10	1:20	1:30		
Permissible Torque	N∙m	1.25	2.5	3	3.5	4		
Backlash	arc minute (degrees)	35 (0.584°)	15 (0).25°)	10 (0	.167°)		
Permissible Speed Range	r/min	0~500	0~250	0~180	0~90	0~60		
Power Supply Input				24 VDC±10% 2.5 A				
Excitation Mode				Microstep				
Maga	Motor kg			0.95				
WId55	Driver kg		0.2					
Dimension No.	Motor			14				
טוווטוווטווווע.	Driver			22				

How to read specifications table → Page 10

Note

• Direction of rotation of the motor and that of the gear output shaft are the same for the gear ratios 1:3.6, 1:7.2 and 1:10. It is the opposite for 1:20 and 1:30 gear ratios.

Speed - Torque Characteristics fs: Maximum Starting Frequency

CRK564AKD-T3.6/CRK564BKD-T3.6

10 (100)

15 Resolution 1 (150) (Resolution 10)

0(0)

CE

Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C. •The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

PN Geared Type Motor Frame Size 28 mm, 42 mm

Specifications (RoHS)

Single Shaft	CRK523PAKD-N5*1	CRK523PAKD-N7.2*1	CRK523PAKD-N10*1	CRK544AKD-N5	CRK544AKD-N7.2	CRK544AKD-N10	
Double Shaft	CRK523PBKD-N5*1	CRK523PBKD-N7.2*1	CRK523PBKD-N10*1	CRK544BKD-N5	CRK544BKD-N7.2	CRK544BKD-N10	
N∙m	0.2	0.3	0.4	0.8	1.2	1.5	
J: kg·m²		9×10 ⁻⁷			54×10 ⁻⁷		
A/Phase		0.35			0.75		
	0.144°	0.1°	0.072°	0.144°	0.1°	0.072°	
	1:5	1:7.2	1:10	1:5	1:7.2	1:10	
N∙m	0.2	0.3	0.4	0.8	1.2	1.5	
N∙m		0.5		1.5 2			
arc minute (degrees)		3 (0.05°)		2 (0.034°)			
arc minute (degrees)			6 (0).1°)			
r/min	0~600	0~416	0~300	0~600	0~416	0~300	
		24 VDC±10% 0.7 A			24 VDC±10% 1.4 A		
			Micr	ostep			
Motor kg		0.25			0.56		
Driver kg		0			.2		
Motor		15			16		
Driver			2	2			
	Single Shaft Double Shaft N·m J: kg·m ² A/Phase N·m N·m arc minute (degrees) arc minute (degrees) arc minute (degrees) r/min Motor Driver kg Motor	Single Shaft CRK523PAKD-N5 ^{\$1} Double Shaft CRK523PBKD-N5 ^{\$1} N·m 0.2 J: kg·m ²	Single Shaft CRK523PAKD-N5 ^{\$1} CRK523PBKD-N7.2 ^{\$1} Double Shaft CRK523PBKD-N5 ^{\$1} CRK523PBKD-N7.2 ^{\$1} N·m 0.2 0.3 J: kg·m ² $y \times 10^{-7}$ A/Phase 0.144° 0.1° 1:5 1:7.2 N·m 0.2 0.3 n·m 0.2 0.35 0.144° 0.1° 1:5 1:5 1:7.2 0.3 N·m 0.2 0.3 n·m 0.5 3 (0.05°) arc minute (degrees) 3 (0.05°) 3 (0.05°) r/min 0~600 0~416 VDC±10% 0.7 A 0.7 Motor kg 0.25 Driver kg 0.25	Single Shaft CRK523PAKD-N5*1 CRK523PAKD-N7.2*1 CRK523PAKD-N10*1 Double Shaft CRK523PBKD-N5*1 CRK523PBKD-N7.2*1 CRK523PBKD-N10*1 N·m 0.2 0.3 0.4 J: kg·m² 9×10 ⁻⁷	Single Shaft CRK523PAKD-N5*1 CRK523PBKD-N7.2*1 CRK523PBKD-N10*1 CRK544AKD-N5 Double Shaft CRK523PBKD-N5*1 CRK523PBKD-N7.2*1 CRK523PBKD-N10*1 CRK544BKD-N5 N·m 0.2 0.3 0.4 0.8 J:kg·m ² 9×10^{-7} CRK523PBKD-N10*1 CRK544BKD-N5 A/Phase 9×10^{-7} 0.4 0.8 1:kg·m ² 0.144° 0.35 0.4 0.8 A/Phase 0.144° 0.1° 0.072° 0.144° 1:5 $1.7.2$ $1:10$ $1:5$ N·m 0.2 0.3 0.4 0.8 N·m 0.2 0.3 0.4 0.8 N·m 0.2 0.3 0.4 0.8 N·m 0.2 $3 (0.05^\circ)$ 1.5 1.5 arc minute (degrees) $3 (0.05^\circ)$ $0 \sim 400$ $0 \sim 600$ r/min $0 \sim 600$ $0 \sim 416$ $0 \sim 300$ $0 \sim 600$ motor kg 0	Single Shaft CRK523PAKD-N5 ^{*1} CRK523PAKD-N7.2*1 CRK523PAKD-N10 ^{*1} CRK544AKD-N5 CRK544AKD-N7.2 Double Shaft CRK523PBKD-N5 ^{*1} CRK523PBKD-N7.2*1 CRK523PBKD-N10 ^{*1} CRK544BKD-N5 CRK544BKD-N7.2 N·m 0.2 0.3 0.4 0.8 1.2 J:kg·m2 9×10 ⁻⁷ CRK544BKD-N5 CRK544BKD-N7.2 A/Phase 9×10 ⁻⁷ 54×10 ⁻⁷ 54×10 ⁻⁷ A/Phase 0.144° 0.1° 0.072° 0.144° 0.1° 11:5 17.7.2 11:10 11:5 17.2 N·m 0.2 0.3 0.4 0.8 1.2 N·m 0.2 0.3 0.4 0.8 1.2 arc minute (degrees) 3 (0.05°) 1.5 1.7.2 arc minute (degrees) 3 (0.05°) 2 (0.034°) 2 (0.034°) arc minute (degrees) $ $	

How to read specifications table → Page 10

*1 Motor lead wire/connector assembly (0.6 m) is included with the connector-coupled motor and driver package.

*2 The value of the maximum torque is for gear. See the speed - torque characteristics for output torque of the geared motor. Note:

•Direction of rotation of the motor and that of the gear output shaft are the same.

Speed - Torque Characteristics fs: Maximum Starting Frequency

Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C.
 The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

CE

PN Geared Type Motor Frame Size 60 mm

Specifications (RoHS)

•								
Madal	Single Shaft	CRK566AKD-N5	CRK566AKD-N7.2	CRK566AKD-N10	CRK564AKD-N25	CRK564AKD-N36	CRK564AKD-N50	
WIDDEI	Double Shaft	CRK566BKD-N5	CRK566BKD-N7.2	CRK566BKD-N10	CRK564BKD-N25	CRK564BKD-N36	CRK564BKD-N50	
Maximum Holding Torque	N∙r	n 3.5	4	5		8		
Rotor Inertial Moment	J: kg∙m	2	280×10 ⁻⁷			175×10 ⁻⁷		
Rated Current	A/Phas	е		1	.4	4		
Basic Step Angle		0.144°	0.1°	0.072°	0.0288°	0.02°	0.0144°	
Gear Ratio		1:5	1:7.2	1:10	1:25	1:36	1:50	
Permissible Torque	N∙r	n 3.5	4	5	8			
Maximum Torque*	N∙r	n 7	9	11	16 20		20	
Backlash	arc minute (degree	i)	2 (0.034°)		3 (0.05°)			
Angular Transmission Error	arc minute (degree	;)		5 (0.	084°)			
Permissible Speed Range	r/mi	n 0~600	0~416	0~300	0~120	0~83	0~60	
Power Supply Input				24 VDC±	10% 2.5 A			
Excitation Mode				Micr	ostep			
Maga	Motor k	g	1.5					
WId55	Driver k	g	0.2					
Dimonsion No.	Motor			[17			
	Driver		22					

How to read specifications table → Page 10

*The value of the maximum torque is for gear. See the speed - torque characteristics for output torque of the geared motor.

Note •Direction of rotation of the motor and that of the gear output shaft are the same.

Speed - Torque Characteristics fs: Maximum Starting Frequency

CRK566AKD-N5/CRK566BKD-N5

CRK566AKD-N10/CRK566BKD-N10

CE

CRK564AKD-N36/CRK564BKD-N36

CRK564AKD-N50/CRK564BKD-N50

Notes:

 Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C. The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Harmonic Geared Type Motor Frame Size 20 mm, 30 mm

Specifications (RoHS)

Model	Single Shaft	CRK513PAKD-H50*1	CRK513PAKD-H100*1	CRK523PAKD-H50*1	CRK523PAKD-H100*1	
WOUEI	Double Shaft	CRK513PBKD-H50*1	CRK513PBKD-H100*1	CRK523PBKD-H50*1	CRK523PBKD-H100*1	
Maximum Holding Torque	N∙m	0.4	0.6	1.8	2.4	
Rotor Inertial Moment	J: kg∙m²	3.1×	<10 ⁻⁷	12×	10 ⁻⁷	
Rated Current	A/Phase	0.	35	0.75		
Basic Step Angle		0.0144°	0.0072°	0.0144°	0.0072°	
Gear Ratio		1:50	1:100	1:50	1:100	
Permissible Torque	N∙m	0.4	0.6	1.8	2.4	
Maximum Torque ^{*2}	N∙m	0.9	1.4	3.3	4.8	
Lost Motion	oro minuto	2 max.	2 max.	1.5 max.	1.5 max.	
(Load Torque)	dit minute	(±0.02 N⋅m)	(±0.03 N⋅m)	(±0.09 N⋅m)	(±0.12 N·m)	
Permissible Speed Range	r/min	0~90	0~45	0~70	0~35	
Power Supply Input		24 VDC±1	10% 0.7 A	24 VDC±1	0% 1.4 A	
Excitation Mode			Micr	ostep		
Maaa	Motor kg	0.	08	0.2		
Wid55	Driver kg 0.2					
Dimonsion No.	Motor	1	8	19		
	Driver			22		

How to read specifications table → Page 10

\$1 Motor lead wire/connector assembly (0.6 m) is included with the connector-coupled motor and driver package.

*2 The value of the maximum torque is for gear. See the speed - torque characteristics for output torque of the geared motor. Notes:

•The inertia represents a sum of the inertia of the harmonic gear converted to a motor shaft value, and the rotor inertia.

 $\blacksquare \ensuremath{\mathsf{Direction}}$ of rotation of the motor and that of the gear output shaft are the opposite.

Speed - Torque Characteristics fs: Maximum Starting Frequency

CRK523PAKD-H50/CRK523PBKD-H50

CRK513PAKD-H100/CRK513PBKD-H100

CRK523PAKD-H100/CRK523PBKD-H100

Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C.
 In order to prevent degradation of the gear grease in harmonic gear, keep the temperature of the gear case under 70°C.

•The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

CE

Harmonic Geared Type Motor Frame Size 42 mm, 60 mm

Specifications (RoHS)

ingle Shaft	CRK543AKD-H50	CRK543AKD-H100	CRK564AKD-H50	CRK564AKD-H100	
ouble Shaft	CRK543BKD-H50	CRK543BKD-H100	CRK564BKD-H50	CRK564BKD-H100	
N∙m	3.5	5	5.5	8	
J: kg∙m²	52×	10 ⁻⁷	210×10 ⁻⁷		
A/Phase	0.1	75	1	.4	
	0.0144°	0.0072°	0.0144°	0.0072°	
	1:50	1:100	1:50	1:100	
N∙m	3.5	5	5.5	8	
N∙m	8.3	11	18	28	
arc minute	1.5 max.	1.5 max.	0.7 max.	0.7 max.	
are minute	(±0.16 N⋅m)	(±0.2 N⋅m)	(±0.28 N⋅m)	(±0.39 N⋅m)	
r/min	0~70	0~35	0~70	0~35	
	24 VDC±1	0% 1.4 A	24 VDC±1	0% 2.5 A	
		Micr	ostep		
lotor kg	0.4	46	1.08		
river kg		0	0.2		
lotor	2	0	21		
river	[22]				
	ngle Shaft puble Shaft N·m J: kg·m ² A/Phase N·m N·m arc minute r/min otor kg iver kg otor	CRK543AKD-H50 Duble Shaft CRK543BKD-H50 N·m 3.5 J: kg·m² 52× A/Phase 0. 0.0144° 1:50 N·m 3.5 N·m 3.5 N·m 3.5 N·m 3.5 N·m 8.3 arc minute (±0.16 N·m) r/min 0~70 24 VDC±1 0. otor kg otor kg otor [2	CRK543AKD-H50 CRK543AKD-H100 nuble Shaft CRK543BKD-H50 CRK543BKD-H100 N·m 3.5 5 J: kg·m ² 52×10^{-7} A/Phase 0.75 0.0144° $0.0072°$ 1:50 1:100 N·m 3.5 5 N·m 8.3 11 arc minute 1.5 max. (±0.16 N·m) $(\pm 0.2 N·m)$ r/min $0~70$ $0~35$ 24 VDC±10% $1.4 A$ otor kg 0.046	CRK543AKD-H50 CRK543AKD-H100 CRK564AKD-H50 buble Shaft CRK543BKD-H50 CRK543BKD-H100 CRK564BKD-H50 N·m 3.5 5 5.5 J: kg·m ² 52×10^{-7} $210 >$ A/Phase 0.0144° 0.0072° 0.0144° 1:50 1:100 1:50 N·m 3.5 5 N·m 3.5 5 N·m 3.5 5 N·m 8.3 11 18 arc minute 1.5 max. 1.5 max. 0.7 max. $(\pm 0.16$ N·m) $(\pm 0.2$ N·m) $(\pm 0.28$ N·m) r/min $0 \sim 70$ $0 \sim 35$ $0 \sim 70$ ver 24 VDC $\pm 10\%$ 1.4 A 24 VDC ± 1 ver 0.2 0.2 0.2	

How to read specifications table → Page 10

*The value of the maximum torque is for gear. See the speed - torque characteristics for output torque of the geared motor.

Notes

The inertia represents a sum of the inertia of the harmonic gear converted to a motor shaft value, and the rotor inertia.

•Direction of rotation of the motor and that of the gear output shaft are the opposite.

Speed - Torque Characteristics fs: Maximum Starting Frequency

CRK543AKD-H50/CRK543BKD-H50

CE

CRK564AKD-H100/CRK564BKD-H100

Notes:

Pay attention to heat dissipation from motor as there will be a considerable amount of heat under certain conditions. Be sure to keep temperature of the motor case under 100°C. In order to prevent degradation of the gear grease in harmonic gear, keep the temperature of the gear case under 70°C. •The driver's automatic current cutback function at motor standstill reduces maximum holding torque by approximately 50%.

Driver Specifications

Protective Functions		When the following protective functions are activated, an alarm signal is output and the motor will coast to a stop. Overheat, Overvoltage, Overflow, ±LS both side active, Reverse limit sensor connection, Home seeking error, Home seeking offset error, No HOMES, TIM / Z / SLIT input error, Hardware overtravel, Software overtravel, Invalid operation data, RS-485 communication error, RS-485 communication timeout, EEPROM error				
Input Signals		³ hotocoupler input, Input resistance: 4.4 kΩ, Input signal voltage: 21.6 to 26.4 V START, ALM-RST, AWO, STOP, MO, M1, M2, M3, M4, M5, HOME/P-PRESET, FWD, RVS, +LS, -LS, HOMES, SLIT) .ine Receiver Input (ENC-A, ENC-B): nput frequency: 100 kHz max., Counting range: -2 147 483 648 to +2 147 483 647 pulse, Counting mode: 90° phase difference nput, multiplied by 1, Interface: Differential line receiver (26C32 or equivalent) .ine Receiver Input (ENC-Z): nput width: 1 ms or more, Interface: Differential line receiver (26C32 or equivalent)				
Output Signals		Photocoupler, Open-collector output (ALM, MOVE, OUT1, OUT2, OUT3, OUT4): External use condition: 26.4 VDC maximum, 20 mA maximum Line driver output (PLS-OUT, DIR-OUT): External use condition: Connect a terminal resistor of 100 Ω or more between the driver and the input of the line receiver. Interface: Differential line receiver (26C31 or equivalent)				
Positioning Data Setting Mode		Incremental (relative distance specification) mode/Absolute (absolute position specification) mode				
1 USILIONING Data	Number of setting data	63				
	Mode	Sequential positioning, Data-select positioning				
	Position setting range	-8 388 608 to +8 388 607 Steps				
Positioning Control	Starting speed setting range	1 to 500 000 Hz				
	Operating speed setting range	1 to 500 000 Hz				
	Acceleration/Deceleration rate setting range	0.001 to 1000 ms/kHz				
Operating Function		Positioning Operation (Single, Linked and Sequential Operation), Speed Control Operation, Home Seeking Operation				
Return-to-Mechanical H	lome Operation	Return-to-home operation is performed from the entire range using mechanical position detection signals (+LS, –LS, HOMELS)				
Communication Control	Mode	RS-485 Serial Communication from Programmable Controller (Master Device)				
Communication Setting	Method	Setting by RS-485 Serial Communications Data Transmit				
	Protocol	Modbus Protocol (Modbus RTU Mode)				
Communication	Electrical Characteristics	In conformance with EIA-485 Use a twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the total wiring distance including extension to 50 m or less.				
Specifications (1)	Transmission Mode	Half Duplex				
	Baud Rate	9600 bps/19200 bps/38400 bps/57600 bps/115200 bps				
	Physical Layer	Asynchronous Communication (Data length: 8 bits, Stop Bit: 1bit/2 bit, Parity: Non/Even/Odd)				
	Protocol	GW Protocol Ver. 1 (Oriental Motor's original protocol)				
Communication	Electrical Characteristics	In conformance with EIA-485 Use a twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the total wiring distance including extension to 50 m or less.				
Specifications (2)	Transmission Mode	Half Duplex				
	Baud Rate	9600 bps/19200 bps/38400 bps/57600 bps/115200 bps/250000 bps/312500 bps/625000 bps				
	Physical Layer	Asynchronous Communication (Data length: 8 bits, Stop Bit: 1 bit/2 bit, Parity: Non)				
Connection Pattern		Up to 31 drivers can be connected to one programmable controller (master device).				
Other Functions		Motor Direction Setting Function, Motor Resolution Setting Function (16 Levels), Stepout Detection Function, Encoder Electronic Gear Setting Function, Operating Current Setting Function (5 to 100%), Standstill Current Setting Function (5 to 50%), Hardware Overtravel Function, Software Overtravel Function, AWO Input Logic Setting Function, Stop Input Logic Setting Function, LS Input Logic Setting Function, Homes Input Logic Setting Function, Stop Input Logic Setting Function, Group Sending Function (RS-485 Communication only), OUT1 to 4 Output Setting Function, Warning Output Function (Overflow, Overheat, Overvoltage, RS-485 Communication Error)				

General Specifications

Item		Motor	Driver			
Insulation Class		Class B (130°C)	_			
Insulation Resista	nce	$100 \ M\Omega$ or more when 500 VDC megger is applied between the windings and the case under normal ambient temperature and humidity.	100 MΩ or more when 500 VDC megger is applied between the following places under normal ambient temperature and humidity. FG Terminal - Power Supply Input Terminal			
Dielectric Strength		Sufficient to withstand 1.5 kVAC at 50 Hz or 60 Hz applied between the windings and the case for 1 minute under normal ambient temperature and humidity. *1.0 kVAC for CRK54 0.5 kVAC for CRK513P, CRK52 PM, CRK52 P, CRK54 PM, CRK54 P	Sufficient to withstand the following for 1 minute under normal ambient temperature and humidity: FG Terminal - Power Supply Input Terminal, 500 VAC, 50 Hz or 60 Hz			
Operating Environment	Ambient Temperature	-10 to $+50^{\circ}$ C (non-freezing): High-resolution type, High-torque type, Standard type, TH , PN geared type 0 to $+40^{\circ}$ C (non-freezing): Harmonic geared type	0 to +40°C (non-freezing)			
	Ambient Humidity	85% or less (non-condensing)				
Atmosphere		No corrosive gases, dust, water or oil				
Temperature Rise		Temperature rise of the windings are 80°C or less measured by the resistance change method. (at rated current, at standstill, five phases energized)	-			
Stop Position Accuracy ^{*1}		± 3 arc minutes ($\pm 0.05^{\circ}$), CRK513P : ± 10 arc minutes ($\pm 0.17^{\circ}$) High-resolution type: ± 2 arc minutes ($\pm 0.034^{\circ}$)	-			
Shaft Runout		0.05 T.I.R. (mm)*4	-			
Radial Play*2		0.025 mm maximum of 5 N	-			
Axial Play*3		0.075 mm maximum of 10 N	_			
Concentricity		0.075 T.I.R. (mm)*4	_			
Perpendicularity		0.075 T.I.R. (mm)*4	_			

Encoder Specifications

Resolution	500 P/R
Output Type	Incremental
Output Signal	3 Channel
Voltage	5 VDC±5%
Current	140 mA
Output Circuit Type	Line Driver

Unit = N

*1 This value is for full step under no load. (The value changes with the size of the load.)

*2 Radial Play: Displacement in shaft position in the radial direction, when a 5 N load is applied in the vertical direction to the tip of the motor's shaft.

*3 Axial Play: Displacement in shaft position in the axial direction, when a 10 N load is applied to the motor's shaft in the axial direction.

*4 T.I.R. (Total Indicator Reading): The total dial gauge reading when the measurement section is rotated one revolution centered on the reference axis center.

Note:

•Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.

Permissible Overhung Load and Permissible Thrust Load

Permissible Overhung Load (Distance from Shaft End mm) Permissible Туре Model Thrust Load 0 20 5 10 15 CRK513PUKD 12 15 CRK52_PM_KD High-Resolution Type CRK52 HPM KD 25 34 52 _ _ CRK52 P KD High-Torque Type CRK52 HP KD High-Torque Type with CRK54 The permissible Encoder CRK54 PM KD thrust load shall be CRK54 P KD Standard Type no greater than the 20 25 34 52 _ CRK54 PRKD motor mass. CRK54 AMKD Standard Type with CRK54 RKD Electromagnetic Brake CRK56 PM KD 90 100 130 180 270 Standard Type with CRK56CKD Encoder CRK56 AMKD 63 75 95 130 190 CRK56 RKD CRK523P KD-T 15 17 20 23 10 _ TH Geared Type CRK543 KD-T 10 30 15 14 20 CRK564 KD-T 70 80 100 120 150 40 CRK523P_KD-N 45 60 80 100 20 _ CRK544 KD-N 150 190 100 120 100 **PN** Geared Type CRK566 KD-N5 280 320 200 220 250 100 CRK566 KD-N7.2, 10 250 270 300 340 390 100 CRK564 KD-N 330 360 400 450 520 100 CRK513P_KD-H 50 75 60 CRK523P KD-H 175 110 135 250 140 Harmonic Geared Type CRK543 KD-H 180 220 270 360 510 220 CRK564 KD-H 320 370 440 550 720 450

●Enter A (single shaft) or B (double shaft) in the box (□) within the model name.

Enter the gear ratio in the box () within the model name.

•Enter the motor case length in the box () within the model name.

Dimensions (Unit = mm)

Motor

◇High-Resolution Type, High-Torque Type

1 **20** mm

Model	Motor Model	Mass kg
CRK513PAKD	PK513PA	0.05
CRK513PBKD	PK513PB	0.05

Motor lead wire/connector assembly of 0.6 m is included with the package. UL Style 3265, AWG24

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately. → Page 44

Applicable Connector

Connector housing: 51065-0500 (MOLEX)

Contact: 50212-8100 (MOLEX)

Crimp tool: 57176-5000 (MOLEX)

2 28 mm

Model	Motor Model	L1	L2	Mass kg	
CRK523 PAKD	PK523□P <mark>□</mark> A	22	-	0.11	
CRK523 PBKD	PK523□P B	32	42	0.11	
CRK524 PMAKD	PK524_PMA	40	-	0.15	
CRK524 PMBKD	PK524 PMB	40	50	0.15	
CRK525 PAKD	PK525⊡P <mark></mark> A	E1 E	-	0.0	
CRK525 PBKD	PK525	51.5	61.5	0.2	

Motor lead wire/connector assembly of 0.6 m is included with the package.

UL Style 3265, AWG24

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately.

→ Page 44

Applicable Connector

Connector housing: 51065-0500 (MOLEX)

Contact: 50212-8100 (MOLEX)

Crimp tool: 57176-5000 (MOLEX)

3 42 mm

Model	Motor Model	L1	L2	Mass kg	
CRK544P AKD	PK544P	20	-	0.2	
CRK544PBKD	PK544PB	39	54	0.5	
CRK546P AKD	PK546P	50	-	0.5	
CRK546PBKD	PK546PB	- 59	74	0.5	

Motor lead wire/connector assembly of 0.6 m is included with the package.

UL Style 3265, AWG22

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately.

→ Page 44

Applicable Connector Connector housing: 51103-0500 (MOLEX) Contact: 50351-8100 (MOLEX)

Crimp tool: 57295-5000 (MOLEX)

4 60 mm

Model	Motor Model	L1	L2	L3	φD	Mass kg
CRK564PMAKD	PK564PMA	16 5	-	7.5		0.65
CRK564PMBKD	PK564PMB	40.0 69.5	69.5		0.0	
CRK566PMAKD	PK566PMA		7.0±0.15	O-0.015	0.07	
CRK566PMBKD	PK566PMB	00	79]		0.67
CRK569PMAKD	PK569PMA	87	-	9.5±0.15	10- ⁰ _0.015	15
CRK569PMBKD	PK569PMB		110			1.0

Motor lead wire/connector assembly of 0.6 m is included with the package.

UL Style 3266, AWG22

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately.

→ Page 44

Applicable Connector

Connector housing: 51144-0500 (MOLEX) Contact: 50539-8100 (MOLEX)

Crimp tool: 57189-5000 (MOLEX)

*The length of machining on the double shaft model is 10 \pm 0.25.

*The length of machining on the double shaft model is 15±0.25.

•Enter H in the box (
) within the model name in the case of high-speed type (0.75 A/phase).

Enter **M** in the box () within the model name in the case of high-resolution type.

These dimensions are for the double shaft models. For the single shaft models, ignore the _____ areas.

◇High-Torque Type with Encoder

5 42 mm

Model

Motor Model Mass kg CRK544PRKD PK544PA-R23L 61.5 0.36

CRK546PRKD PK546PA-R23L 81.5 0.56 Motor lead wire/connector assembly of 0.6 m is included with the package.

UL Style 3265, AWG22

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector

L

35.5

assembly and connector will not be supplied. They must be purchased separately. → Page 44

•Applicable Connector Connector housing: 51103-0500 (MOLEX) Contact: 50351-8100 (MOLEX)

Crimp tool: 57295-5000 (MOLEX)

20±1 42 22.5 1.5 31±0.2 4×M3×4.5 Deep 15±0.25 ±0.2 5 31 -0.012(h7) 4.5 ± 0.15 -0.033(h8) 15 600 $\Phi 2^{-}$ Þ22-20 Encoder Cable $\phi 5$ 8 Encoder Leads AWG26 Shielded Cable

♦ Standard Type

6 42 mm

Model	Motor Model	L1	L2	Mass kg	
CRK543AKD	PK543AW	22	-	0.25	
CRK543BKD	PK543BW	- 33	48	0.25	
CRK544AKD	PK544AW	20	-	0.0	
CRK544BKD	PK544BW	- 39	54	0.5	
CRK545AKD	PK545AW	47	-	0.4	
CRK545BKD	PK545BW	4/	62	0.4	

*The length of machining on the double shaft model is 15±0.25.

7 **60** mm

Model	Motor Model	L1	L2	Mass kg	
CRK564AKD	PK564AW	10 E	-	0.6	
CRK564BKD	PK564BW	40.0	46.0 69.5		
CRK566AKD	PK566AW	50 F	-	0.0	
CRK566BKD	PK566BW	59.5	80.5	0.0	
CRK569AKD	PK569AW	00	-	1.0	
CRK569BKD	PK569BW	09	110	1.5	

 \diamondsuit Standard Type with Electromagnetic Brake 8 \Box 42 mm

Model	Motor Model	L	Mass kg
CRK543AMKD	PK543AWM	63	0.37
CRK544AMKD	PK544AWM	69	0.42
CRK545AMKD	PK545AWM	77	0.52

9 🗌 60 mm

Model	Motor Model	L	Mass kg
CRK564AMKD	PK564AWM	88.5	0.9
CRK566AMKD	PK566AWM	99.5	1.1
CRK569AMKD	PK569AWM	129	1.6

♦ Standard Type with Encoder

10 🗆 42 mm

Model	Motor Model	L	Mass kg
CRK543RKD	PK543AW-R23L	55.5	0.31
CRK544RKD	PK544AW-R23L	61.5	0.36
CRK545RKD	PK545AW-R23L	69.5	0.46

11 **G0** mm

CRK564RKD PK564AW-R23L 73.5 0.7 CRK566RKD PK566AW-R23L 84.5 0.9 CRK569RKD PK569AW-R23L 114 1.4	Model	Motor Model	L	Mass kg
CRK566RKD PK566AW-R23L 84.5 0.9 CRK569RKD PK569AW-R23L 114 1.4	CRK564RKD	PK564AW-R23L	73.5	0.7
CRK569RKD PK569AW-R23L 114 1.4	CRK566RKD	PK566AW-R23L	84.5	0.9
	CRK569RKD	PK569AW-R23L	114	1.4

○TH Geared Type

12 **28 mm**

Model	Motor Model	Gear Ratio	Mass kg
CRK523PAKD-T	PK523PA-T	7 2 10 20 20	0.17
CRK523PBKD-T	PK523PB-T	7.2, 10, 20, 30	0.17

Motor lead wire/connector assembly of 0.6 m is included with the package.

UL Style 3265, AWG24

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/

connector assembly and connector will not be supplied. They must be purchased separately. → Page 44

Applicable Connector

Connector housing: 51065-0500 (MOLEX) Contact: 50212-8100 (MOLEX)

Crimp tool: 57176-5000 (MOLEX)

*The length of machining on the double shaft model is 10 ± 0.25 .

13 🗆 42 mm

*The length of machining on the double shaft model is 15±0.25.

•Enter the gear ratio in the box () within the model name.

These dimensions are for the double shaft models. For the single shaft models, ignore the _____ areas.

♦ TH Geared Type

14 **GO mm**

Model	Motor Model	Gear Ratio	Mass kg				
CRK564AKD-T	PK564AW-T	3.6, 7.2,	0.05	_			
CRK564BKD-T	PK564BW-T	10, 20, 30	0.95	_			
			(Lu) 20±0,25 A 15 Motor	114.5 93.5 93.5 600_50 5 Motor Lead Cable φ7	32±1 50 ⁻ 0 12 12 50 ⁻ 0 12 50 ⁻ 0 12 12 12 12 12 12 12 12 12 12	60 60 4×M4×8 Dec 4×M4×8 Dec 52 1 31	20 7.5±0.15 910+92 A−A
◇PN Geared Type 15 □28 mm							
Model	Motor Model	Gear Ratio	Mass ko				
CRK523PAKD-N	PK523PA-N			-			
CRK523PBKD-N	PK523PB-N	5, 7.2, 10	0.25				
Motor lead wire/connector as the package. UL Style 3265 If you are purchasing only a etc., motor lead wire/connect be supplied. They must be p Applicable Connector Connector housing: 51065 Contact: 50212-8100 (MO Crimp tool: 57176-5000 (M	ssembly of 0.6 m is i , AWG24 motor for maintenan tor assembly and co urchased separately. -0500 (MOLEX) LEX) MOLEX)	included with ce purpose, nnector will not → Page 44	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	72.5 62.	2 == 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	23±1 17 15 210 210 210 210 210 210 210 210	28 23±0.2 5 1 16.5 4×M3×6 Deep

*The length of machining on the double shaft model is 10 ± 0.25 .

16 **42** mm

Model	Motor Model	Gear Ratio	Mass kg
CRK544AKD-N	PK544AW-N	5 7 2 10	0.56
CRK544BKD-N	PK544BW-N	5, 7.2, 10	0.50

Dimensions

◇PN Geared Type

17 **G0 mm**

Model	Motor Model	Gear Ratio	L1	L2	Mass kg
CRK566AKD-N	PK566AW-N	5, 7.2, 10	102 5	-	1.5
CRK566BKD-N	PK566BW-N		103.5	124.5	1.5
CRK564AKD-N	PK564AW-N	25, 36, 50	109 E	-	1.5
CRK564BKD-N	PK564BW-N		100.0	129.5	1.5

◇Harmonic Geared Type

18 **20** mm

Model Motor Model		Gear Ratio	Mass kg
CRK513PAKD-H	PK513PA-HS	EQ. 100	0.00
CRK513PBKD-H	PK513PB-H	50, 100	0.06

Motor lead wire/connector assembly of 0.6 m is included with

the package. UL Style 3265, AWG24

If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately. → Page 44

Applied. They must be purchased separat
 Applicable Connector

Connector housing: 51065-0500 (MOLEX)

Contact: 50212-8100 (MOLEX) Crimp tool: 57176-5000 (MOLEX)

19 🗌 30 mm

Model	Motor Model	Gear Ratio	Mass kg								
CRK523PAKD-H	PK523HPA-H	50 100	0.2								
CRK523PBKD-H	PK523HPB-HS	50, 100	0.2								
Notor lead wire/connector as	ssembly of							<u>irt</u>)			
0.6 m is included with the pa	ickage.							ed f			
JL Style 3265, AWG24								Iting			
f you are purchasing only a	motor for							rota			
maintenance purpose, etc., r	notor lead wire/		*2 1		66.5			i et			
connector assembly and con	nector will		10±1		56.5		23±1 ,	dia /			
not be supplied. They must b	be purchased			-		2.5 0	.5	015(0.02	20	
separately. 🔶 Page 44		- 28 -	1)			-11	15			- 30	
Applicable Connector			012(11)					7.5 48 42 42	ĕ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Connector housing: 51065	-0500 (MOLEX)	5-0	~						15.5±0		প্র †
Contact:50212-8100 (MOL	_EX)		+				! <u> </u>	<u> </u>		HARD	
Crimp tool: 57176-5000 (1	MOLEX)									HR BY	
			0.15								
			- roi						± /	Nerral	Ø,
			T 4					4×M3>	<u>4 Deep*1</u>	5 1	
		16.5		9.5					/		
								4×M3:	×6 Deep /		

*1 The position of the machining on the output shaft [ϕ 8] relative to the screw holes position on a maximum diameter of ϕ 20 on the rotating part is arbitrary.

*2 The length of machining on the double shaft model is 10 \pm 0.25.

•These dimensions are for the double shaft models. For the single shaft models, ignore the _____ areas.

\bigcirc Harmonic Geared Type

20 🗌 42 mm

*1 The position of the key slot on the output shaft [\$10] relative to the screw holes position on a maximum diameter of \$26.5\$ on the rotating part is arbitrary.
 *2 The length of machining on the double shaft model is 15±0.25.

*The position of the key slot on the output shaft [ϕ 12] relative to the screw holes position on a maximum diameter of ϕ 33.5 on the rotating part is arbitrary.

•Enter the gear ratio in the box () within the model name.

•These dimensions are for the double shaft models. For the single shaft models, ignore the _____ areas.

Driver

22 Driver Model: CRD503-KD, CRD507-KD, CRD507H-KD, CRD514-KD Mass: 0.2 kg

Power Connector (CN1)

Connector: MC1,5/3-STF-3, 5 (PHOENIX CONTACT Inc.)

Cable/Connector Assembly (CN2, Length: 1 m)

Connector: FX2B-40SA-1.27R (HIROSE ELECTRIC CO., LTD)

Lead Wire/Connector Assembly (For Motor Connection) (CN4, Length: 0.6 m)

Connector housing: 51103-0500 (MOLEX)

Contact: 50351-8100 (MOLEX)

Applicable crimp tool: 57295-5000 (MOLEX)

Lead Wire/Connector Assembly (For Encoder Connection) (CN5, Length: 0.6 m)*

- Connector housing: 51103-0900 (MOLEX)
- Contact: 50351-8000 (MOLEX)
- Applicable crimp tool: 57295-5000 (MOLEX)
- *Encoder Type Only

 If you are purchasing only a driver for maintenance purpose, etc., lead wire/connector assembly (for motor connection), cable/connector assembly and power connector will be supplied.

Lead Wire/Connector Assembly (For motor connection, CN4)

Lead Wire/Connector Assembly (For encoder connection, CN5)

Connection and Operation

Names and Functions of Driver Parts

1 Signal Monitor Displays

◇LED Displays

Indication	Color	Function	Description			
POWER	Green	Power Display	This LED is lit while the main power is input.			
ALARM	Red	Alarm Display	This LED will blink when a protective function is triggered.			
C-DAT	Green	Communication Display	This LED will blink or illuminates steadily when the driver is communicating with the master station.			
C-ERR	Red	Communication Error Display	This LED will illuminate when a RS-485 communication error occurs.			

◇Alarm Type

No. of ALARM LED Blinks	Function	Cause			
2	Overheat	The internal temperature of the driver exceeded 85°C.			
3	Overvoltage	The internal voltage exceeded the permissible value.			
4	Overflow*	The deviation between the encoder counter value and command position reached the stepout detection band.			
	±LS Both Sides Active	Both the +LS and -LS signals were detected.			
	Reverse Limit Sensor Connection	The LS opposite to the operating direction has detected during a return-to-home operation.			
	Home Seeking Error	Return-to-home operation did not complete normally.			
	No HOMES	The HOMES is not detected at a position between +LS and -LS during return-to-home operation in 3-sensor mode.			
	TIM, Z*, SLIT Input Error	None of the SLIT input, TIM output and ZSG output could be detected during return-to-home operation.			
7	Hardware Overtravel	A +LS or -LS signal was detected.			
	Software Overtravel	A software limit was reached.			
	Home Seeking Offset Error	A limit sensor signal was detected during offset movement as part of return-to-home operation.			
	Invalid Operation Data	Operation data was invalid.			
	RS-485 Communication Error	A RS-485 communication error had been detected three times consecutively.			
	RS-485 Communication Timeout	The time set in the applicable parameter has elapsed, and yet the communication could not be established with the host system.			
9	EEPROM Error	The stored data was damaged.			

*This function is available when you use encoder type.

2 Address Number Setting Switch (SW1)

Indication	Switch Name	Function
SW1	Address Number Setting Switch	Use this LED when controlling the system via RS-485 communication. Set the address number of RS-485 communication. (Factory setting: 0)

3 Function Setting Switches (SW2)

Display	Pin No.	Function			
	1				
	2	Set the baud rate of RS-485 communication.			
SW2	3				
	4	Set the address of RS-485 communication. (ON: Master device of general purpose)			

\diamondsuit Baud Rate Setting of RS-485 Communication

Baud Rate Pin No.	9600 bps	19200 bps	38400 bps	57600 bps	115200 bps	250000 bps	312500 bps	625000 bps
1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
3	OFF	OFF	OFF	OFF	ON	ON	ON	ON

4 Terminal Resistor Setting Switch (SW3)

Display	Switch Name	Function
SW3	Terminal Resistor Setting Switch	Turn the terminal resistor setting switch ON and set the terminal resistor (120 Ω) for RS-485 communication. OFF: Disabled ON: Enabled

5 I/O Signals Connector (CN2, 40 pins)

Display	Input/Output	Pin No.	Signal Name	Description
		A1	IN-COMO	Input Common
		A2	START	Start Input
		A3	ALM-RST	Alarm Reset Input
		A4	AWO	All Windings Off Input
		A5	STOP	Stop Input
		A6	MO	
		A7	M1	
		A8	M2	Data Calcotion Input
		A9	M3	
	Input	A10	M4	
	Input	A11	M5	
		A12	HOME/P-PRESET	Return-to-Home/Position Preset Input
		A13	FWD	Forward Input
		A14	RVS	Reverse Input
		A15	+LS	+ Limit Sensor Input
	-	A16	-LS	– Limit Sensor Input
		A17	HOMES	Mechanical Home Sensor Input
		A18	SLIT	Slit Sensor Input
		A19	_	-
CNO		A20	IN-COM1	Sensor Input Common
GNZ		B1	MOVE+	Motor Moving Output
		B2	MOVE-	
		B3	ALM+	Alorm Output
		B4	ALM-	Alarm Output
		B5	0UT1+	Control Output 1*
		B6	0UT1-	(Initial Value: AREA)
		B7	OUT2+	Control Output 2*
		B8	0UT2-	(Initial Value: READY)
		B9	0UT3+	Control Output 3*
	Output	B10	0UT3-	(Initial Value: WNG)
	υτίμαι	B11	OUT4+	Control Output 4*
		B12	OUT4-	(Initial Value: HOME-P)
		B13	-	-
		B14	-	-
		B15	PLS-OUT+	Pulse Output
		B16	PLS-OUT-	(Line Driver Output)
		B17	DIR-OUT+	Direction Output
		B18	DIR-OUT-	(Line Driver Output)
		B19	GND	GND
	B20	_	-	

*These settings can be changed using the "OUT1 signal mode selection" to "OUT4 signal mode selection" parameters.

Connection Diagram

◇Connection to Peripheral Equipment

*1 Lead wire/connector assembly (0.6 m) is included with the motor/driver package or driver only. *2 Cable/connector assembly (1 m) is included with the motor/driver package or driver only.

♦ Connecting the Power Supply

Use the CN1 connector to connect the power supply cable (AWG22: 0.3 mm²) to the power supply connector (CN1) on the driver.

Pay attention to polarity when connecting the power supply. Connecting the power supply in reverse polarity may damage the driver.

Use a power supply that can supply sufficient input current. When power supply capacity is insufficient, a decrease in motor

output can cause the following malfunctions: Motor does not rotate properly at high speed (insufficient torque).

Slow motor startup and stopping.

◇Connecting the Encoder Use the lead wire/connector a

Use the lead wire/connector assembly for CN5, connect the encoder to the encoder connector (CN5) on the driver.

Example of standard type with encoder

\Diamond Connecting the Motor

Use the lead wire/connector assembly for CN4, connect the motor to the motor connector (CN4) on the driver. The customer must provide the terminal block, connectors and other items needed to interconnect the leads.

CN5 Pin Assignments

Pin

No.1		1	Pin No.	Signal Name	Description	Encoder Lead Wire Color
2			1	ENC-A+	Encoder input A-phase	Red
3—		1	2	ENC-A-	(Line receiver)	Pink
4		-	3	ENC-B+	Encoder input B-phase	Green
5		4	ENC-B-	(Line receiver)	Blue	
7			5	ENC-Z+	Encoder input Z-phase	Yellow
, 8—	L. I		6	ENC-Z-	(Line receiver)	Orange
9		1	7	+5 VDC OUT	+5 VDC power supply output for encoder	White
			8	GND	GND	Black
			9	SHIELD	Shield (Connect to GND)	Shield

♦ Connecting to a Host Controller

Connecting to a Current Sink Output Circuit

Notes:

•Use a cable/connector assembly (included) for input/output signals. The cable should be as short as possible.

•Use the input signals at 24 VDC. If this specification is exceeded, the internal components may be damaged.

• Use the output signals at 24 VDC or less and 20 mA or less. If these specifications are exceeded, the internal components may be damaged.

Check the specification of the connected equipment. When the current exceeds 20 mA, connect the external resistor Ro.

•Connect a terminal resistor of 100 Ω or more between the input of the line receiver terminals.

Provide a minimum distance of 200 mm between the signal lines and power lines (AC lines, motor lines and other large-current circuits).

Do not run the signal lines in the same duct as power lines or bundle them with power lines.

• If noise generated by the motor and power cables causes a problem, shield the cables or insert the ferrite cores in the cables.

Connecting to a Current Source Output Circuit

*0 V is common with GND of CN1 (non-insulation).

Notes:

•Use a cable/connector assembly (included) for input/output signals. The cable should be as short as possible.

•Use the input signals at 24 VDC. If this specification is exceeded, the internal components may be damaged.

• Use the output signals at 24 VDC or less and 20 mA or less. If these specifications are exceeded, the internal components may be damaged. Check the specification of the connected equipment. When the current exceeds 20 mA, connect the external resistor R₀.

 \bullet Connect a terminal resistor of 100 Ω or more between the input of the line receiver terminals.

Provide a minimum distance of 200 mm between the signal lines and power lines (AC lines, motor lines and other large-current circuits). Do not run the signal lines in the same duct as power lines or bundle them with power lines.

. If noise generated by the motor and power cables causes a problem, shield the cables or insert the ferrite cores in the cables.

Description of Input/Output Signals

Input Signals

◇Input Circuit and Sample Connection

- Start (START) Input
- Stop (STOP) Input
- All Windings Off (AWO) Input
- Alarm-Reset (ALM-RST) Input
- Data-Select (M0 to M5) Input
- Forward (FWD) Input
- Reverse (RVS) Input
- Return-to-Mechanical Home (HOME)/Position-Preset (P-PRESET) Input

Mechanical Home Sensor (HOMES) Input

- + Limit Sensor (+LS) Input
- Limit Sensor (–LS) Input
- Slit Sensor (SLIT) Input

♦ Start (START) Input: Pin No. A2

Turn the START input from OFF to ON to start positioning operation.

♦ Stop (STOP) Input: Pin No. A5

The STOP input is used to stop the operating motor (factory setting: normally closed).

Turn the STOP input to ON to start motor operation. You can switch the input logic by parameter setting. And you can set a desired stopping operation as follows.

- Immediate stopThe motor will stop immediately regardless of the specified deceleration rate.
- Deceleration stop ······ The motor will stop according to the specified deceleration rate (initial value).
- Immediate stop + Motor is not excited
 -The motor will stop immediately regardless of the specified deceleration rate, after which the motor excitation will be turned off.
- Deceleration stop + Motor is not excited
- The motor will stop according to the specified deceleration rate, after which the motor excitation will be turned off.

Note:

 If the STOP input is normally closed, be sure to turn this input ON when operating the motor.

◇All Windings Off (AWO) Input: Pin No. A4

This signal is used to cut off the motor current (factory setting: normally open).

When the AWO input is turned ON, the motor current will be cut off and the motor will lose its holding torque.

When the AWO input is turned OFF, current will be supplied to the motor and holding torque will be restored.

You can switch the input logic by parameter setting.

The Motor has holding power in proportion to the current at motor standstill.

Note:

•When operating the motor, be sure to turn the AWO input "OFF."

◇Alarm-Reset (ALM-RST) Input: Pin No. A3

This signal is used to reset the alarm that has been generated by the driver's protective function. Input an ACL signal once after removing the cause that has triggered the protective function.

 Overvoltage, RS-485 communication error and EEPROM error cannot be reset with the ALM-RST input. To reset these alarms, the power must be cycled.

\bigcirc Data Select (M0 to M5) Input: Pin No. A6 to A11

Select a desired operation data number for positioning operation or continuous operation based on a combination of ON/OFF states of M0 to M5 inputs.

◇Forward (FWD) Input: Pin No. A13

When the FWD input turns ON, the motor will perform continuous operation in the + direction.

◇Reverse (RVS) Input: Pin No. A14

When the RVS input turns ON, the motor will perform continuous operation in the - direction.

◇Return-to-Mechanical Home (HOME)/

Position-Preset (P-PRESET) Input: Pin No. A12

Factory setting is HOME input. Switch between HOME input and P-PRESET input using the "HOME/P-PRESET input switching" parameter.

HOME Input (Factory setting)

The return-to-home operation starts when the HOME input turns ON.

P-PRESET Input

When the P-PRESET input is turned ON, the value in the "preset position" parameter will be overwritten by the command position.

Omechanical Home Sensor (HOMES) Input: Pin No. A17

- + Limit Sensor (+LS) Input: Pin No. A15
- Limit Sensor (-LS) Input: Pin No. A16

HOMES Input

This input detects the mechanical home position when a return-tohome operation is executed in the 3-sensor mode. You can switch the input logic for HOMES input by parameter setting. •The factory setting of this command is normally open.

+LS Input, -LS Input

They are used to detect the home during return-to-home operation.

You can switch the input logics for +LS input and -LS input by parameter setting.

The factory setting of this command is normally open.

Return-to-Mechanical Home Operation

When a +LS or -LS is detected, the motor operates in the direction opposite that of the detected limit.

Positioning and Speed Control Operation

When a +LS or -LS is detected, the driver's protective function (hardware overtravel) is activated. As a result, the alarm (ALM) output is turned OFF and the motor stops.

♦ Slit Sensor (SLIT) Input: Pin No. A18

This signal is used to detect the home using a slit disc, etc. When detecting the home, use of the SLIT input in addition to the HOMES input and \pm LS inputs will increase the accuracy of home detection.

You can switch the input logic for SLIT input by parameter setting. •The factory setting of this command is normally open.

Output Signals

♦ Output Circuit and Sample Connection

- Control Output 1 (OUT1) to Control Output 4 (OUT4)
 Motor Operating (MOVE) Output
- Alarm (ALM) Output
- Alarm (ALIVI) Output

Pulse (PLS-OUT) OutputDirection (DIR-OUT) Output

•Be sure to connect pin No. B19 of the driver to the GND.

◇Motor Operating (MOVE) Output: Pin No. B1, B2 The MOVE output becomes ON while operating the motor or return-to-home operation.

◇Control Output 1 (OUT1) to Control Output 4 (OUT4): Pin No. B5 to B12

The OUT1 through OUT4 outputs can be used as output ports for general signals. The following output signals can be assigned. •Area (AREA) Output *Default for OUT1 output •Ready (READY) Output *Default for OUT2 output •Warning (WNG) Output *Default for OUT3 output •Return-to-Home Complete (HOME-P) Output *Default for OUT4 output

- Timing (TIM) Output
- Z Phase (ZSG) Output
- Misstep Detection (STEPOUT) Output
- Remote Output 1 (R-OUT1)
- Remote Output 2 (R-OUT2)
- Remote Output 3 (R-OUT3)
- Remote Output 4 (R-OUT4)
- Overheat (O. H.) Output

AREA Output

This signal will be output when the motor output shaft is inside the area set by the "area 1" and "area 2" parameters.

Connection and Operation

READY Output

This signal will be output when the driver becomes ready. Start operation after the READY output has turned ON.

WNG Output

This signal is output when a warning generates. However, the operation will continue.

You can change the warning condition by parameter setting.

HOME-P Output

This signal is output upon completion of return-to-home.

TIM Output

This signal turns ON when the motor is at its excitation home. If the base step angle of the motor is 0.72° , the TIM output will turn ON every time the motor moves by 7.2° from its excitation home in synchronization with the internal oscillation pulse.

Microsteps/step 1: Signal is output once every 10 pulses. Microsteps/step 10: Signal is output once every 100 pulses.

Timing Chart 0.72°/step (Microsteps/step 1)

*When connected as shown in the sample connection, the signal will be "photocoupler ON" at step "0."

Note:

•When power is turned ON, the excitation sequence is reset to step "0" and the "TIM" signal is output.

ZSG Output

The ZSG output signal is output when the ENC-Z input signal is input from the encoder.

Normally the ENC-Z input signal is input every time the motor output shaft turns one revolution.

Note:

•This signal is used when an encoder is connected.

Timing Charts

When the power is turned on and the STOP input is turned ON (normally closed), the READY output will turn ON and input of the START or FWD (RVS) input signal will become possible.

*1 When the STOP input logic is normally closed (factory setting).

*2 If the "stepout detection" parameter is set to "enable," this period becomes 1.5 s or less. *3 The specific time varies depending on the command speed.

STEPOUT Output

This signal becomes effective when an encoder is connected, and a deviation error occurs.

This signal will be output when the deviation between the encoder counter value and driver command position reaches the value set by parameter.

R-OUT1, 2, 3, 4 Output

These signals are general outputs. These signals are used when the system is controlled via RS-485 communication.

O. H. Output

The "Overheat" signal is output to protect the driver from heat damage. The O.H. output is turned "OFF" automatically when the internal temperature of the driver is recovered.

◇Alarm (ALM) Output: Pin No. B3, B4

When an alarm generates, the ALM output will turn OFF. At the same time, the ALARM LED of the driver will blink and the motor will stop.

Set the host controller so that it will stop motor operation commands upon detection of an OFF status of the ALM output. You can check the cause of the alarm by counting the number of times the ALARM LED blinks.

◇Pulse (PLS-OUT) Output: Pin No. B15, B16

The PLS-OUT output is used to output the driver's internal oscillation pulses. The number of pulses to be output corresponds to the commanded travel. The pulse frequency corresponds to the operating speed.

Note:

•When connecting to a line receiver, be sure to connect a terminal resistor of 100 Ω or more between the line receiver inputs.

♦ Direction (DIR-OUT) Output: Pin No. B17, B18

The DIR-OUT output is used to output the driver's internal direction command.

Note:

•When connecting to a line receiver, be sure to connect a terminal resistor of 100 Ω or more between the line receiver inputs.

♦ Speed Control Operation

*1 When the STOP input logic is normally closed (factory setting).

*2 If the "stepout detection" parameter is set to "enable," this period becomes 1.5 s or less.
*3 The specific time varies depending on the command speed.

List of Motor and Driver Combinations

Model names for motor and driver combinations are shown below.

Туре	Model	Motor Model	Driver Model	Туре	Model	Motor Model	Driver Model
	CRK523PMAKD	PK523PMA*			CRK523PAKD-T7.2	PK523PA-T7.2*	
	CRK523PMBKD	PK523PMB*			CRK523PBKD-T7.2	PK523PB-T7.2*	
	CRK524PMAKD	PK.524PMA*	-	-	CRK523PAKD-T10	PK523PA-T10*	CRD503-KD
	CRK524PMBKD	PK524PMB*	CRD503-KD		CRK523PBKD-T10	PK 523PB-T10*	
	CRK525RMAKD	DK 525DAAA*	-		CPK523PAKD-T20	DK 523DA-T20*	
	CDV525DMPVD		-		CRK523PARD-120	DV 52200 T20*	
		PK523FMD			CRK523PBKD-120	PKSZSFD-120*	
	CRK523HPMAKD	PK5Z3HPMA*	-		CRK523PARD-130	PK523PA-130*	
	СКК523НРМВКД	PK523HPMB*			CRK523PBKD-130	PK523PB-130*	
	CRK524HPMAKD	PK524HPMA*	CRD.507H-KD		CRK543AKD-T3.6	PK543AW-13.6	1
	CRK524HPMBKD	PK524HPMB*			CRK543BKD-T3.6	PK543BW-T3.6	
High-Resolution	CRK525HPMAKD	PK525HPMA*			CRK543AKD-T7.2	PK543AW-T7.2	
Туре	CRK525HPMBKD	PK525HPMB*			CRK543BKD-T7.2	PK543BW-T7.2	
	CRK544PMAKD	PK544PMA*			CRK543AKD-T10	PK543AW-T10	
	CRK544PMBKD	PK544PMB*			CRK543BKD-T10	PK543BW-T10	CRD307-RD
	CRK546PMAKD	PK546PMA*	CRD507-KD	IH Geared Type	CRK543AKD-T20	PK543AW-T20	
	CRK546PMBKD	PK546PMB*	1		CRK543BKD-T20	PK543BW-T20	
	CRK564PMAKD	PK564PMA*			CRK543AKD-T30	PK543AW-T30	
	CRK564PMBKD	PK 564PMB*	1		CRK543BKD-T30	PK 543BW-T30	
		PK 566PM 4*			CRK564AKD-T3 6	PK 56/AW-T3 6	
	CPK566PMRKD	PK 566PMB*	CRD514-KD		CPK564RKD.T3 6	PK 56 / BW/-T3 6	
	CRK560PMAKD	PK560PMAA*	-		CRK564AKD-T7 2	PK5640W-T7.2	
	CRK509FMARD	DK540DAD*	-		CRK504ARD-17.2		
		DK512DA*			CRR304DRD-1/.2	DV544040-17.2	
	CRK513PAKD	rkjijrA"	4		CRKJ04AKD-IIU	PK304AW-IIU	CRD514-KD
	CRK513PBKD	PK513PB*			CRK564BKD-T10	PK564BW-110	
	CRK523PAKD	PK523PA*	CRD503-KD		CRK564AKD-T20	PK564AW-120	
	CRK523PBKD	PK523PB*			CRK564BKD-T20	PK564BW-T20	
	CRK525PAKD	PK525PA*			CRK564AKD-T30	PK564AW-T30	
	CRK525PBKD	PK525PB*			CRK564BKD-T30	PK564BW-T30	
High Torque Type	CRK523HPAKD	PK523HPA*			CRK523PAKD-N5	PK523PA-N5*	- CRD503-KD - CRD507-KD
riigii-ioique iype	CRK523HPBKD	PK523HPB*	CRD507H-KD	-	CRK523PBKD-N5	PK523PB-N5*	
	CRK525HPAKD	PK525HPA*			CRK523PAKD-N7.2	PK523PA-N7.2*	
	CRK525HPBKD	PK525HPB*			CRK523PBKD-N7.2	PK523PB-N7.2*	
	CRK544PAKD	PK544PA*			CRK523PAKD-N10	PK523PA-N10*	
	CRK544PBKD	PK544PB*			CRK523PBKD-N10	PK523PB-N10*	
	CRK546PAKD	PK546PA*	CRD507-KD		CRK544AKD-N5	PK544AW-N5	
	CRK546PBKD	PK546PB*			CRK544BKD-N5	PK544BW-N5	
High-Torque Type	CRK544PRKD	PK544PA-R23L*			CRK544AKD-N7.2	PK544AW-N7.2	
with Encoder	CRK546PRKD	PK546PA-R231*	CRD507-KD		CRK544BKD-N7.2	PK544BW-N7 2	
	CRK543AKD	PK543AW			CRK544AKD-N10	PK544AW-N10	
	CRK543BKD	PK 5//3BW/	1		CRK544BKD-N10	PK544BW-N10	
	CPK5//AKD	PK5440W/	-	PN Geared Type	CRK5466AKD-N5	PK5660W-NI5	
			CRD507-KD		CRK500ARD-N5		
			_		CRK500BKD-NJ		
		PK545AVV			CRK500AKD-IN7.2		
Standard Type	CKK545BKD	PK343BVV				PK300BW-IN7.2	
	CRK564AKD	PK564AW	-		CKK500AKD-NTU	PK566AW-NTU	
	CRK564BKD	PK564BW			CRK566BKD-N10	PK566BW-N10	CRD514-KD
	CRK566AKD	PK566AW	CRD514-KD		CRK564AKD-N25	PK564AW-N25	
	CRK566BKD	PK566BW	4		CRK564BKD-N25	PK564BW-N25	
	CRK569AKD	PK569AW	4		CRK564AKD-N36	PK564AW-N36	
	CRK569BKD	PK569BW			CRK564BKD-N36	PK564BW-N36	
	CRK543AMKD	PK543AWM			CRK564AKD-N50	PK564AW-N50	
Standard Tupo with	CRK544AMKD	PK544AWM	CRD507-KD		CRK564BKD-N50	PK564BW-N50	
Electromagnetic	CRK545AMKD	PK545AWM			CRK513PAKD-H50	PK513PA-H50S*	
Brake	CRK564AMKD	PK564AWM			CRK513PBKD-H50	PK513PB-H50S*	
Diake	CRK566AMKD	PK566AWM	CRD514-KD		CRK513PAKD-H100	PK513PA-H100S*	CRD503-KD
	CRK569AMKD	PK569AWM]		CRK513PBKD-H100	PK513PB-H100S*	
	CRK543RKD	PK543AW-R23L			CRK523PAKD-H50	PK523HPA-H50S*	
	CRK544RKD	PK544AW-R23L	CRD507-KD		CRK523PBKD-H50	PK523HPB-H50S*	
Standard Type with	CRK545RKD	PK545AW-R23L	1		CRK523PAKD-H100	PK523HPA-H100S*	CKD3U/H-KD
Encoder	CRK564RKD	PK564AW-R23L		Harmonic Geared	CRK523PBKD-H100	PK523HPB-H100S*	
Elicodei	CRK566RKD	PK566AW-R23I	CRD514-KD	Туре	CRK543AKD-H50	PK543AW-H50S	
	CRK569RKD	PK5694W-R231	1	211	CRK543BKD-H50	PK543BW-H50S	
			<u>I</u>		CRK5434KD-H100	PK543AW-H1005	CRD507-KD
					CRK543RKD-H100	PK543RW-H1005	-
					CRK564AKD.U50	PK 56/ 11/003	
					CPK564RKD-U50	PK 56 / BW/-H509	
						DK 56 / A\A/ U1000	CRD514-KD
					CDV56/DVD UIOO	DK54 (D) ((11005	
					CKRJO4BRD-HIUU	FV30484A-H1002	

*If you are purchasing only a motor for maintenance purpose, etc., motor lead wire/connector assembly and connector will not be supplied. They must be purchased separately. Accessories, motor lead wire/connector assembly and motor connector sets are available.
→ Page 44

Accessories (Sold separately)

Control Module RoHS

Operating data setting, changing various parameters, and can be used as a monitor.

Product Line

Dimensions (Unit = mm)

Control Module

Data Setting Software (RoHS)

Operating data setting, changing various parameters, and can be used as a monitor on the computer.

Product Line

Model
MEXE02

PC interface cable of 5 m and USB cable of 0.5 m are included.

Required System Configuration

Windows 2000 Professional Service Pack 4 or later Windows XP Home Edition Service Pack 2 or later Windows XP Professional Service Pack 2 or later Windows Vista Home Basic Service Pack 1 or later Windows Vista Home Premium Service Pack 1 or later Windows Vista Business Service Pack 1 or later Windows Vista Ultimate Service Pack 1 or later			
Pentium III 800 MHz or more*1			
Windows 2000 Professional : 448 MB or more Windows XP Home Edition, Professional : 512 MB or more Windows Vista Home Basic : 896 MB or more Windows Vista Home Premium : 1.4 GB or more Windows Vista Business : 1.4 GB or more Windows Vista Ultimate : 1.4 GB or more			
Available disk space of 30 MB or more*2*3			
CD-ROM Drive (for installation)			
USB 1.1 1 Port			

*1 Your operating system must support the CPU.

*2 It may increase by system configuration.

- *3 For MEXEO2 to function, Microsoft .NET Framework 2.0 Service Pack 1 must be installed in your PC. Microsoft .NET Framework 2.0 Service Pack 1 will be installed automatically, if not already installed. Accordingly, a free hard disk space of up to 500 MB is required in addition to the hard disk capacity specified above.
- Windows and Windows Vista are a registered trademark of US Microsoft Corporation or its subsidiaries in the United States and other countries. Pentium is a registered trademark of Intel Corporation.

Panel Cut-Out for Control Module

Connection between Computer and Driver

Cables

Various cables provide convenient connection between a motor, driver and encoder.

Lead Wire/Connector Assembly RoHS

For CN4 (Motor connector)

The lead wire with connector for connecting the motor and driver. Lead wire with connector assembly (0.6 m) is included with the motor/driver package or driver only.

For CN5 (Encoder connector)

The lead wire with connector for connecting the encoder and driver. Lead wire with connector assembly (0.6 m) is included with the motor with encoder and driver package.

Product Line

Model	Application	Lmm	Conductor AWG	
LC5N06B	For Motor Connection	600	00	
LC5N10B		1000	(0.3 mm ²)	
LC09A-006	For Encoder Connection	600	(0.5 mm)	

Dimensions (Unit = mm)

For CN4

For CN5

For Connector-Coupled Motors (RoHS)

These lead wires with connectors are available for connection with the connector-coupled motor, eliminating the need for assembling a connector. A motor lead wire/connector assembly (0.6 m) is included with the motor and driver package for the connector-coupled types.

Product Line

Model	Applicable Model	Applicable Motor	Length m	Conductor AWG	
LC5N06A	CRK513PKD CRK513PKD-H CRK52PKD CRK52HPKD CRK52PMKD	PK513P PK513P PK52 PK52 PK52 PK52 PM	0.6	24	
LC5N10A	CRK52 HPM KD CRK523P KD-T CRK523P KD-N CRK523P KD-H	PK52 HPM PK523P -T PK523P -N PK523P -N	1	(0.2 mm²)	
LC5N06B			0.6		
LC5N10B		PK54 PM	1	22 (0.3 mm ²)	
LC5N06C LC5N10C	CRK56□PM <mark>□</mark> KD	PK56 PM	0.6 1	(0.0 11111)	

Enter the motor case length in the box (□) within the model name. Enter A (single shaft) or B (double shaft) in the box (□) within the model name. Enter the gear ratio in the box (□) within the model name.

Connector Sets for Motors (RoHS)

A set of connector housings and contacts for use with connectorcoupled motors.

Each package contains enough housings and contacts for 30 motors.

The photograph shows CS5N30B

Specifications

Model	CS5N30A	CS5N30B	C\$5N30C
Connector housing	51065-0500	51103-0500	51144-0500
Contact	50212-8100	50351-8100	50539-8100
Applicable Crimp Tool	57176-5000	57295-5000	57189-5000
Manufacturer		MOLEX	
Applicable Cable	AWG30 to 24 (0.05 to 0.2 mm ²) Wire Insulation Diameter ϕ 1.4 mm Strip Length 1.3 to 1.8 mm	AWG28 to 22 (0.08 to 0.3 mm ²) Wire Insulation Diameter ф1.15 to 1.8 mm Strip Length 2.3 to 2.8 mm	AWG24 to 18 (0.2 to 0.75 mm ²) Wire Insulation Diameterf ϕ 1.4 to 3 mm Strip Length 3 to 3.5 mm

Note:

•Crimp tools are not included. Please provide separately.

Product Line

Model	Applicable Model	Applicable Motor
	CRK513P KD	PK513P
	CRK513P KD-H	PK513P-HS
	CRK52 PKD	PK52□P
C\$5N30A	CRK52_HP_KD	PK52 HP
	CRK52_PM_KD	PK52 PM
	CRK52 HPM KD	PK52 HPM
	CRK523P KD-T	PK523P-T
	CRK523P_KD-N	PK523P-N
	CRK523P KD-H	PK523HP-HS
	CRK54□P <mark>□</mark> KD	PK54□P
CS5N30B	CRK54_PRKD	PK54 PA-R23L
	CRK54_PM_KD	PK54 PM
CS5N30C	CRK56 PM KD	PK56 PM

•Enter the motor case length in the box (\Box) within the model name. Enter A (single shaft) or B (double shaft) in the box (Enter the gear ratio in the box (III) within the model name.

Extension Cables (RoHS)

Cable for extending the wiring distance between the motor and driver. Two lengths: 5 m and 10 m are available.

Product Line

woder	Length m	Conductors		
CC05PK5	5	-		
CC10PK5	10	5		

onductor configuration: 5 Conductor size: AWG22 (0.3 mm²) •Finished outer diameter: ϕ 7.2 mm Cable rating: 105°C •Outer casing: Oil-resistant, heat-resistant, non-migrating vinyl

RS-485 Communication Cable (ROHS)

This cable with connector assemblies are available for use with the multi-axis operation to connect drivers.

Product Line

Connection Example

Motor Mounting Brackets RoHS

Mounting brackets are convenient for installation and securing a stepping motor and geared stepping motor.

Product Line

 High-Resolution Type, High-Torque Type, High-Torque Type with Encoder, Standard Type with Encoder, Standard Type with Electromagnetic Brake, Standard

Туре

Accessories

Material: Aluminum Alloy							
Model	Applicable Product						
	CRK54 PKD						
PAFOP	CRK54_PM_KD						
	CRK54 ^{RKD}						
	CRK54_PRKD						
PALOP	CRK54						
	CRK54□AMKD						
	CRK56 PM KD						
DALOD 5	CRK56□RKD						
PALZP-3	CRK56						
	CRK56 AMKD						

•Enter the motor case length in the box (\Box) within the model name.

Enter **A** (single shaft) or **B** (double shaft) in the box (\Box) within the model name. •The mounting bracket base is built with holes large enough to allow for alignment

- adjustments in the horizontal direction.
- These mounting brackets can be perfectly fitted to the pilot of the stepping motors. (except for PALOPA)

Note:

Not available for geared type.

Motor Installation Direction

The motor cable comes out at right angles to the motor. Orient the motor so that the cable faces either upward or sideways.

Geared Type

Material: Aluminum Alloy

SOL2A	CRK564 KD-T
SOLOB	CRK543KD-T
Model	Applicable Product

- Enter A (single shaft) or B (double shaft) in the box () within the model name. Enter the gear ratio in the box () within the model name.
- The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction.

•Use the screws provided to install the SOL2A.

Since mounting screws are not included with **SOLOB**, provide appropriate screws separately.

3 PAFOP

Mounting the Motor

1 PAL2P-5

①Use the screws provided to secure the motor to the mounting bracket.

②Attach the motor from the direction shown by the arrow (B).

- ①Use the screws provided to secure the motor to the mounting bracket.
- ②Attach the motor from the direction shown by the arrow (B).

①Use the screws provided to secure the motor to the mounting bracket.
②Attach motor from the direction shown by either arrow (A) or arrow (B).

Dimensions (Unit = mm)

PALOP

Mass: 35 g

Screws (Included)

M3 Length 10 mm ... 4 pieces

PAL2P-5

Mass: 110 g

Screws (Included)
 M4 Length 12 mm ... 4 pieces

SOLOB

Mass: 85 g

SOL2A Mass: 120 g

M4 Length 12 mm ... 4 pieces

PAFOP

Mass: 30 g

Screws (Included)
 M3 Length 7 mm ... 4 pieces

Flexible Couplings

A flexible coupling ideal for your motor is available.

Once you have decided on a motor/gear and the shaft diameter of the equipment to be connected, determine the proper flexible coupling to use.

All motor shaft diameters of stepping motor packages are available (including geared motors).

Selecting a Coupling

Motor Type Coupling Type	High-Resolution Type, High-Torque Type, High-Torque Type with Encoder, Standard Type with Encoder, Standard Type with Electromagnetic Brake, Standard Type	Geared Type	Application
MC Couplings	0	_	High-Accuracy Positioning
MCV Couplings	0	—	High-Accuracy Positioning, Vibration Suppression
MCS Couplings	0	0	High-Strength, High-Accuracy Positioning

Types and Features of Couplings

•MC Couplings

This slit-type one-piece coupling offering high torsional rigidity and low inertia is ideal for applications where high-speed positioning and responsive control are needed.

♦ Features

No Backlash
Torsional rigidity is high, responsiveness excellent.
Low Inertia
Set screw type and clamp type are available.

MCS Couplings

This three-piece coupling adopts an aluminum alloy hub and a resin spider. The simple construction ensures that the high torque generated by a geared motor can be transmitted reliably. The proper elasticity of the spider suppresses motor vibration.

♦Features

•High strength (usable for geared motor) has been realized.

A spider (material: polyurethane) controls the vibration generated by the motor.
 No Backlash

MCV Couplings

The rubber molding type coupling offering vibration suppression is ideal for applications where short time and high-accuracy positioning operation.

\Diamond Features

Vibration Suppression
High Torque, High Response
No Backlash
All-in-one design structure to mold hub on both sides with rubber insulator.

MC Couplings (RoHS)

These products are set screw and clamp type couplings for a stepping motor.

Product Line

Set Screw Type	Clamp Type
Model	Model
MC12	MC12C2
MC16	MC16_C2
MC20 S	MC20_C2
MC25	MC25□C2
MC32	MC32 C2

 \bullet Enter the inner diameter of coupling in the box (\Box) within the model name.

(10)

Product Number Code

MC	23	08	10	2
1	2	3	4	5

1	MC Couplings							
2	Outer diameter of coupling							
3	Inner Diameter d1 (Smaller side) (O6A represents ϕ 6.35 mm)							
4	Inner Diameter d2 (Larger side) (O6A represents ϕ 6.35 mm)							
6	Connection S: Set Screw Type							
	Method C2: Clamp Type							

•Enter the inner diameter d1 of smaller side, either motor shaft diameter or driven shaft diameter. Enter the inner diameter d2 of larger side, either motor shaft diameter or driven shaft diameter.

Coupling Selection Table

		Motor	r Shaft				Driven S	shaft Diame	ter mm										
Model	Туре	Dian	neter	03	04	05	06	06A	08	10	12	14							
		m	ım	φ3	φ4	φ5	ф6	ф6.35	φ8	φ10	φ12	φ14							
CRK513P KD	MC12	04	φ4	0	0	0													
CRK523PM□KD, CRK523HPM□KD																			
CRK524PM□KD, CRK524HPM□KD																			
CRK525PM□KD, CRK525HPM□KD	MC12	05	ф5		0	0	0												
CRK523P_KD, CRK523HP_KD																			
CRK525P□KD, CRK525HP□KD																			
CRK543 KD																			
CRK544□KD, CRK544P□KD																			
CRK545□KD, CRK544PM□KD	MC16		ф5			0	0		0										
CRK54_AMKD		05			0														
CRK543RKD, CRK544RKD																			
CRK545RKD																			
CRK544PRKD																			
CRK546PM□KD, CRK546P□KD		0.5	1.5																
CRK546PRKD	MC20	05	φο																
CRK564 KD, CRK564PM KD																			
CRK566_KD, CRK566PM_KD																			
CRK569□KD, CRK564RKD	MC25	08	ф8				0	0	0	0	0								
CRK56_AMKD																			
CRK566RKD, CRK569RKD																			
CRK569PM KD	MC32	10	φ10					0	0	0	0	0							
								~ *											

225

©08

•Enter **A** (single shaft) or **B** (double shaft) in the box (\Box) within the model name.

•Enter the motor case length in the box (_) within the model name.

©Common to set screw type and clamp type Only for set screw type

Set Screw Type

Specifications

			Dimer	nsions						Static			
Model	Outer Diameter ϕA	Length W	Shaft Hole Diameter d1H8	Shaft Hole Diameter d2H8	L	Screw Used	Normal Torque	Mass	Inertial Moment	Torsion Spring Constant	Permissible Eccentricity	Permissible Declination	Permissible End Play
	mm	mm	mm	mm	mm	М	N∙m	g	kg⋅m ²	N·m/rad	mm	deg	mm
MC1203045			3	4									
MC1204045			4	4									
MC1204055	12	18.5	4	5	5	M2.5	0.4	3.7	0.83×10 ⁻⁷	45	0.10	2	±0.3
MC1205055			5	5									
MC1205065			5	6									
MC160405S			4	5									
MC1604065			4	6									
MC1605055			5	5					7			_	
MC1605065	16	23	5	6	6.5	M3	0.5	8.1	3.3×10 ⁻⁷	80	0.10	2	±0.4
MC1605085			5	8									
MC100005			6	0									
MC2005055			5	5									
MC2005055			5	6									
MC2005085			5	8									±0.4
MC2006065			6	6					4 9×10 ⁻⁷	170	0.10	2	
MC200606AS			6	6.35									
MC2006085	20	26	6	8	7.5	M3	1.0	14					
MC2006105			6	10									
MC2006A085			6.35	8									
MC2008085			8	8									
MC2008105			8	10									
MC250506S			5	6									
MC250606S			6	6									
MC250606AS			6	6.35									
MC2506085			6	8									
MC2506105			6 05	10									
MC2506A085	25	31	0.35	10	8.5	M4	2.0	27	26×10 ⁻⁷	380	0.15	2	±0.5
MC2508085			0.55	8									
MC2508105			8	10									
MC2508125			8	12									
MC2510105			10	10									
MC251012S			10	12									
MC320606AS			6	6.35									
MC320608S			6	8									
MC3206A08S			6.35	8									
MC3206A105			6.35	10									
MC3208085			8	8									
MC3208105			8	10					7			_	
MC3208125	32	41	8	12	12	M4	4.0	60	96×10-7	500	0.15	2	±0.5
MC3210105			10	10									
MC3210125			10	12									
MC3210145			10	14									
MC3212145			14	14									
MC3214165			14	16									
			14	10									L

Clamp Type

Dimensions

MC12C2, MC16C2, MC20C2, MC25C2, MC32C2

Specifications

			Dimer	nsions						Static				
Model	Outer Diameter ΦA	Length W	Shaft Hole Diameter d1H8	Shaft Hole Diameter d2H8	L	Screw Used	Normal Torque	Mass	Inertial Moment	Torsion Spring Constant	Permissible Eccentricity	Permissible Declination	Permissible End Play	
	mm	mm	mm	mm	mm	М	N∙m	g	kg∙m²	N·m/rad	mm	deg	mm	
MC120404C2			4	4										
MC120405C2	12	18.5	4	5	5	M2	0.4	3.6	0.78×10 ⁻⁷	45	0.10	2	±0.3	
MC120505C2			5	5										
MC160506C2	16	23	5	6	6.5	M2.5	0.5	9.2	3.4×10 ⁻⁷	80	0.10	2	±0.4	
MC200506C2			5	6										
MC200508C2			5	8										
MC200606C2			6	6					-					
MC200606AC2	20	26	6	6.35	7.5	M2.5	1.0	16	9.1×10 ⁻⁷	170	0.10	2	±0.4	
MC200608C2			6	8										
MC2006A08C2			6.35	8										
MC200808C2			8	8										
MC250506C2			5	6										
MC250606C2			6	6										
MC250606AC2			6	6.35										
MC250608C2			6	8										
MC250610C2	25	31	6	10	8.5	M3	2.0	2.0	28	26×10 ⁻⁷	380	0.15	2	±0.5
MC2506A08C2			6.35	8								-	0.0	
MC2506A10C2			6.35	10										
MC250808C2			8	8										
MC250810C2			8	10										
MC251010C2			10	10										
MC320606AC2			6	6.35										
MC320608C2			6	8										
MC3206A08C2			6.35	8										
MC3206A10C2			6.35	10										
MC320808C2			8	8										
MC320810C2	32	41	8	10	12	M4	4.0	64	97×10 ⁻⁷	500	0.15	2	±0.5	
MC32U812C2			0 10	10										
MC321010C2			10	10										
MC221012C2			10	14										
MC221014C2			10	14										
MC221214C2			14	14										
MC321414C2			14	14										

MCV Couplings (RoHS)

These products are clamp type couplings for a stepping motor.

Product Line

Model
MCV15
MCV19
MCV25
MCV30

 $\bullet \mathsf{Enter}$ the inner diameter of coupling in the box () within the model name.

Product Number Code

MCV Couplings

Outer diameter of coupling ③ Inner Diameter d1 (Smaller side)

	\odot	 \otimes		
2			12	ဓ
@ !			9	0
	\odot			

(4) Inner Diameter d2 (Larger side) •Enter the inner diameter d1 of smaller side, either motor shaft diameter or driven shaft diameter.

Enter the inner diameter d2 of larger side, either motor shaft diameter or driven shaft diameter.

Coupling Selection Table

		Motor	Shaft		Driven Shaft Diameter mm 03 04 05 06 06A 08 10 1								
Model	Туре	Dian	neter	03	04	05	06	06A	08	10	12	14	15
		m	mm		φ4	φ5	ф6	ф6.35	φ8	ф10	φ12	φ14	φ15
CRK513P_KD	MCV15	04	φ4										
CRK523PM KD, CRK523HPM KD													
CRK524PM□KD, CRK524HPM□KD													
CRK525PM□KD, CRK525HPM□KD	MCV15	05	φ5										
CRK523P□KD, CRK523HP□KD													
CRK525P_KD, CRK525HP_KD													
CRK543 KD													
CRK544□KD, CRK544P□KD													
CRK545□KD, CRK544PM□KD													
CRK54_AMKD													
CRK543RKD, CRK544RKD	MCV19	05	φ5										
CRK545RKD													
CRK544PRKD													
CRK546PM□KD, CRK546P□KD,													
CRK546PRKD													
CRK564 KD, CRK564PM KD													
CRK566□KD, CRK566PM□KD													
CRK569 KD, CRK564 RKD	MCV25	08	ф8										
CRK56_AMKD													
CRK566RKD, CRK569RKD													
CRK569PM KD	MCV30	10	φ10										

•Enter **A** (single shaft) or **B** (double shaft) in the box (\Box) within the model name.

•Enter the motor case length in the box (\Box) within the model name.

1

_ 2

Specifications

Model Length (AA Shaft Hole W Shaft Hole Definition (A2H) Shaft Hole Definition (B2H) Shaft H				Dimensions						Static			
mm mm<	Model	Outer Diameter _{\$} A	Length W	Shaft Hole Diameter d1H8	Shaft Hole Diameter d2H8	Screw Used	Normal Torque	Mass	Inertial Moment	Torsion Spring Constant	Permissible Eccentricity	Permissible Declination	Permissible End Play
MCV150305 MCV150404 MCV150405 15 23 3 5 4 4 4 5 5 6 6 M1.6 0.77 8 27×10 ⁻⁷ 43 0.15 1.5 ±0.2 MCV150505 15 5 6		mm	mm	mm	mm	М	N∙m	g	kg·m ²	N·m/rad	mm	deg	mm
MCV150404 MCV150405 MCV150506 15 23 4 4 4 5 4 6 6 5 M1.6 0.77 8 8 2.7×10 ⁻⁷ 43 0.15 1.5 ±0.2 MCV150505 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV250506 MCV250506 MCV250506 MCV250506 MCV250506 MCV250506 MCV250506 MCV250610 MCV25000 MCV25000 MCV25000 MCV25000 MCV25000 MCV25000 MCV25000 MCV25000 MCV	MCV150305			3	5								
MCV150406 MCV150505 15 23 4 5 6 MCV150506 15 6 6 6 6 15 15 ±0.2 MCV150506 5 6 6 6 6 15 15 ±0.2 MCV190506 75 6 6 6 6 15 15 ±0.2 MCV190506 75 6 6 6 8 16 6 15 16 16 8 16 15 ±0.2 14 8.4×10.7 88 0.15 1.5 ±0.2 MCV190606 8 8 8 14 8.4×10.7 88 0.15 1.5 ±0.2 MCV250506 8 8 10 1.5 ±0.2 10 10 10 10 10 10 10 1.5 ±0.2 MCV250610 25 8 10 10 10 10 1.5 ±0.2 1.5 ±0.2	MCV150404			4	4								
MCV150306 MCV150506 MCV150506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV250506 MCV250506 MCV250506 MCV250506 MCV250506 MCV250506 MCV2505010 MCV250610 MCV2505010 MCV2501014 MCV2501014 MCV2501014 MCV250114 MCV30114 MCV	MCV150405			4	5								
MCV150505 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190606 MCV190608 MCV190608 MCV190608 MCV190608 MCV190608 MCV190808 MCV250508 MCV250508 MCV250508 MCV250608 MCV250608 MCV250608 MCV250608 MCV250608 MCV250608 MCV250610 MCV250612 MCV300114 MCV300114 MCV300114 MCV301114 MCV301114 MCV30114 MCV30114 MCV30114 MCV30114 MCV30114 MCV301	MCV150406	15	23	4	6	M1.6	0.77	8	2.7×10 ⁻⁷	43	0.15	1.5	±0.2
MCV150506 MCV190505 MCV190506 MCV190506 MCV190506 MCV190506 MCV190506 MCV190606 MCV190606 MCV190606 MCV190608 MCV190608 MCV190608 MCV250506 MCV250506 MCV250506 MCV250506 MCV250506 MCV250506 MCV250508 MCV250608 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV25008 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV2508 MCV250	MCV150505			5	5								
MCV190506 MCV190506 MCV190506 MCV190508 MCV190508 MCV190608 MCV190608 MCV190608 MCV250508 MCV250508 MCV250508 MCV250508 MCV250610 MCV250610 MCV250610 MCV250610 MCV250610 MCV250610 MCV250610 MCV250812 MCV250814 MCV250814 MCV300814 MCV300814 MCV3004 MCV30	MCV150506			5	6								
MCV190505 MCV190508 MCV190508 MCV190606 MCV190608 19 26 5 5 6 MCV190506 MCV190608 19 26 6 6 8 1.47 14 8.4×10 ⁻⁷ 88 0.15 1.5 ±0.2 MCV190608 8 8 8 8 8 8 1.47 14 8.4×10 ⁻⁷ 88 0.15 1.5 ±0.2 MCV190608 8 8 8 8 8 8 1.5 1.5 ±0.2 MCV250608 5 6 8 6.35 10 1.5 ±0.2 MCV250608 6 8 10	MCV150606			6	6								
MCV190506 MCV190508 MCV190606 MCV190606 MCV290508 MCV250506 MCV250506 MCV250506 MCV250608 MCV250608 MCV250608 MCV250608 MCV250608 MCV250608 MCV250610 MCV250610 MCV250610 MCV250610 MCV250812 MCV250812 MCV250812 MCV250811 MCV250811 MCV250811 MCV250811 MCV250811 MCV250811 MCV250811 MCV250811 MCV2500815 MCV300815 MCV300815 MCV300815 MCV300815 MCV30114 MCV301111 MCV301111 MCV30111 MCV30111 MCV30111 MCV30111 MCV30111 MCV301	MCV190505			5	5								
MCV190508 MCV190606 MCV190608 19 26 5 8 M2 1.47 14 8.4×10' ⁷ 88 0.15 1.5 ±0.2 MCV190608 8 8 8 8 8 8 1.47 14 8.4×10' ⁷ 88 0.15 1.5 ±0.2 MCV250508 5 8 6.35 8 8 8 8 8 1.47 14 8.4×10' ⁷ 88 0.15 1.5 ±0.2 MCV250508 5 8 6.35 10 6 8 10	MCV190506			5	6								
MCV190606 MCV190608 No. Co. A.O. A.O. <th>MCV190508</th> <th>19</th> <th>26</th> <th>5</th> <th>8</th> <th>M2</th> <th>1 47</th> <th>14</th> <th>8.4×10⁻⁷</th> <th>88</th> <th>0 15</th> <th>15</th> <th>+02</th>	MCV190508	19	26	5	8	M2	1 47	14	8.4×10 ⁻⁷	88	0 15	15	+02
MCV190608 MCV250506 MCV250506 MCV250508 MCV250608 MCV250608 MCV250608 MCV250608 MCV250608 MCV250608 MCV250608 MCV250808 MCV250810 MCV250812 MCV250812 MCV250812 MCV251010 MCV250814 MCV300814 MCV300814 MCV300815 MCV300814 MCV300814 MCV300814 MCV301014 MCV301014 MCV3014 MCV30114 MCV30	MCV190606		20	6	6						0.10		_ 012
MCV190808 Image: Constraint of the second seco	MCV190608			6	8								
MCV250506 MCV2506A08 MCV2506A08 MCV2506A08 MCV2506A08 MCV250608 25 32 5 6 5 8 6.35 8 6.35 8 6.35 8 6.35 8 6.35 8 7 9 7 170 0.15 1.5 ±0.2 MCV250608 8 8 8 10 10 10 10 10 10 10 15 ±0.2 MCV250810 8 8 10 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 10 12 10 12 10 12 10 12 10 12 10 12 10 11 10 15 ±0.3 MCV300812 30 36 36 10 11 10 15 ±0.3 15 ±0.3 MCV301014 10 15 14 15 14	MCV190808			8	8								
MCV250508 MCV2506A10 MCV2506A10 MCV2506A10 MCV250608 MCV250608 MCV250808 MCV250808 MCV250810 MCV250812 MCV250812 MCV250812 MCV250812 MCV2508112 MCV250810 MCV250810 MCV2508114 MCV300810 MCV300810 MCV300810 MCV300810 MCV300810 MCV300810 MCV300810 MCV300810 MCV300811 MCV30111 MCV30111 MCV30111 MCV30111 MCV30111 MCV30111 MCV30111 MCV301415 25 8 8 8 9 9 9 1.5 ±0.2 30 36 5 10 10 12 M3 4.41 45 69×10 ⁻⁷ 220 0.2 1.5 ±0.3 MCV30114 MCV301415 10 15 10 15 14 14 15 10 15 10 15 10 15 10 15 10 15 10 16 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 <	MCV250506			5	6								
MCV2506A08 MCV250608 MCV250610 MCV250808 MCV250808 MCV250810 MCV250810 MCV250810 MCV250812 MCV250810 MCV250812 MCV251010 MCV251012 MCV300808 MCV300816 MCV300814 MCV300815 MCV300814 MCV300815 MCV300112 MCV30114 MCV301415 25 32 66 30 6 8 8 90 90 15 1.5 ±0.2 MCV250810 MCV250812 MCV250812 MCV300808 MCV300816 MCV300814 MCV300815 MCV30114 25 32 8 8 10 </th <th>MCV250508</th> <th>-</th> <th></th> <th>5</th> <th>8</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	MCV250508	-		5	8								
MCV2506A10 MCV250610 MCV250810 MCV250810 MCV250812 MCV250812 MCV250812 MCV250812 MCV250812 MCV250812 MCV250812 MCV250812 MCV251012 MCV300808 MCV250812 MCV300816 MCV300816 MCV300815 MCV300815 MCV300815 MCV300814 MCV3001012 MCV301016 MCV30114 MCV301414 MCV301414 MCV301415 25 30 10 1.5 ±0.2 30 25 32 6 10 10 12 170 0.15 1.5 ±0.2 MCV250812 MCV300816 MCV300814 MCV300815 MCV301016 MCV30114 MCV301414 MCV3014145 8 10 10 10 12 14 14 14 14 15 69×10 ⁻⁷ 220 0.2 1.5 ±0.3	MCV2506A08			6.35	8								
MCV250608 MCV250808 MCV250810 MCV250810 MCV250812 MCV250812 MCV250810 MCV250810 MCV250812 MCV250810 MCV250812 MCV300808 MCV300808 MCV300808 MCV300813 MCV300814 MCV300814 MCV300814 MCV301015 MCV301014 MCV301414 MCV301414 MCV301415 25 32 6 10 1.5 ±0.2 30 25 32 6 10 8 10 12 M3 4.41 45 69×10 ⁻⁷ 220 0.2 1.5 ±0.3	MCV2506A10	-		6.35	10								
MCV250810 25 32 6 10 M2.5 2.8 28 30×10 ⁻⁷ 170 0.15 1.5 ±0.2 MCV250810 8 10 8 10 8 10	MCV250608			6	8				00 10-7	170	0.45		
MCV250808 MCV250810 MCV250812 8 8 10 MCV250812 8 10 8 12 MCV2500808 10 10 10 10 MCV251012 10 10 12 MCV300808 8 10 MCV300810 8 12 MCV300812 8 10 MCV300815 8 12 MCV300815 10 10 MCV301010 30 36 10 10 12 14 MCV301214 14 14 MCV301415 14 15	MCV250610	25	32	6	10	M2.5	2.8	28	30×10-7	170	0.15	1.5	±0.2
MCV250810 MCV250812 MCV251010 MCV251012 8 10 8 12 10 10 10 MCV25012 10 10 12 10 12 MCV300808 MCV300810 MCV300812 MCV300815 MCV300815 MCV300815 MCV301010 MCV301012 MCV301012 MCV301014 MCV301015 MCV301014 MCV30115 MCV301214 MCV301414 MCV301415 30 36 8 10 30 36 10 10 10 12 M3 4.41 45 69×10 ⁻⁷ 220 0.2 1.5 ±0.3	MCV250808			8	8								
MCV250812 8 12 10 10 10 MCV251012 10 12 MCV300808 8 8 MCV300810 8 10 MCV300812 8 12 MCV300815 8 12 MCV300815 8 12 MCV300815 8 12 MCV301010 10 10 MCV301012 30 36 MCV301014 10 12 MCV301214 10 14 MCV301414 14 14 MCV301415 14 14	MCV250810	-		8	10								
Image: Normal conduction of the image: Normal condetee the image: Normal conduction of the imag	MCV250812	-		8	12								
MCV251012 I I I I MCV300808 8 8 10 MCV300810 8 12 MCV300812 8 12 MCV300815 8 12 MCV300815 8 12 MCV301010 8 15 MCV301012 30 36 MCV301014 10 12 MCV301015 10 14 MCV301214 10 15 MCV301415 14 14	MCV251010	-		10	10								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MCV201012			0	12								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MCV300810			0	0								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MCV300810			0	10								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MCV300812			8	1/								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MCV300815			8	14								
MCV301012 30 36 10 10 14 MCV301014 10 14 MCV301015 10 14 MCV301214 12 14 MCV301414 14 14 MCV301415 14 15	MCV301010	-		10	10								
MCV301014 10 14 MCV301015 10 15 MCV301214 12 14 MCV301414 14 14 MCV301415 14 15	MCV301012	30	36	10	12	M3	4.41	45	69×10 ⁻⁷	220	0.2	1.5	±0.3
MCV301015 10 15 MCV301214 12 14 MCV301414 14 14 MCV301415 14 15	MCV301014			10	14								
MCV301214 12 14 MCV301414 14 14 MCV301415 14 15	MCV301015			10	15								
MCV301414 14 14 MCV301415 14 15	MCV301214			12	14								
MCV301415 14 15	MCV301414			14	14								
	MCV301415			14	15								

MCV15

26

Ð

⊛

012 019

фd1 \circledast

> 1 \circledast

4×M2 Hexagonal Socket Head Screw

MCV19

Mass: 14 g

MCV25

Mass: 28 g

MCV30

Mass: 45 g

MCS Couplings (RoHS)

These products are clamp type couplings for a geard type of the stepping motor.

Product Number Code

MCS	30	80	12
1	2	3	4

1	MCS Couplings
2	Outer diameter of coupling
(3)	Inner Diameter d1 (Smaller side) (FO4 represents ϕ 6.35 mm)

(4) Inner Diameter d2 (Larger side) (**F04** represents ϕ 6.35 mm)

•Enter the inner diameter d1 of smaller side, either motor shaft diameter or driven shaft diameter. Enter the inner diameter d2 of larger side, either motor shaft diameter or driven shaft diameter.

Coupling Selection Table

Product Line

Model
MCS14
MCS20
MCS30
MCS40
MCS55

•Enter the inner diameter of coupling in the box (\Box) within the model name.

						Motor Shaft Driven Shaft Diameter mm													
Geared Type	Model	Gear Ratio	Туре	Dian	neter	04	05	06	F04	08	10	12	14	15	16	18	20	22	24
				m	m	φ4	φ5	ф6	ф6.35	φ8	φ10	φ12	φ14	φ15	φ16	φ18	φ20	φ22	φ24
	CRK523P□KD-T■	7.2, 10 20, 30	MCS14	05	φ5	•	•	•											
TH Geared		3.6, 7.2, 10	MCS20	06	ф6														
Туре	20, 30	MCS30	06	ф6															
	3.6, 7.2	MCS30	08	φ8															
		10, 20, 30	MCS40	08	φ8														
	CRK523P KD-N	5, 7.2 , 10	MCS20	08	φ8														
		5	MCS20	10	φ10														
PN Geared		7.2, 10	MCS30	10	φ10														
Туре		5	MCS40	12	φ12														
		7.2, 10	MCS55	12	φ12														
	CRK564 KD-N	25, 36, 50	MCS55	12	φ12														
	CRK513P KD-H	50, 100	MCS14	05	φ5														
Harmonic	CRK523P KD-H	50, 100	MCS30	08	φ8														
Geared Type	CRK543 KD-H	50, 100	MCS40	10	φ10														
	CRK564 KD-H	50, 100	MCS55	12	φ12														

•Enter A (single shaft) or B (double shaft) in the box (
) within the model name. Enter the gear ratio in the box (I) within the model name.

Specifications

			Dim	ensions					Static			
Model	Outer Diameter ΦA	Length W	Shaft Hole Diameter d1H7	Shaft Hole Diameter d2H7	Key Slot Tolerance b/t	Normal Torque*	Mass	Inertial Moment	Torsion Spring Constant	Permissible Eccentricity	Permissible Declination	Permissible End Play
	mm	mm	mm	mm	mm	N∙m	g	kg⋅m ²	N·m/rad	mm	deg	mm
MCS140404			4	4								
MCS140405			4	5								
MCS140406	14	22	4	6	_	2.0	67	0 184 ~ 10-6	22.0	0.06	0.0	+0.6
MCS140505	14	22	5	5	_	(0.5)	0.7	0.104×10	22.5	0.00	0.9	0
MCS140506			5	6								
MCS140606			6	6								
MCS200505			5	5								
MCS200506			5	6								
MCS2005F04			5	6.35								
MCS200508			5	8								
MC5200510			5	10								
MC5200000			6	6.25								
MCS2000F04	20	30	6	0.50	_	5.0	10.8	1 050 × 10-6	51.6	0.08	0.0	+0.8
MCS200610	20	50	6	10		(1.2)	15.0	1.033×10	51.0	0.00	0.5	0
MCS20F04F04			6.35	6.35								
MCS20F0408			6.35	8								
MCS20F0410			6.35	10								
MC5200808			8	8								
MCS200810			8	10								
MCS201010			10	10								
MCS300606			6	6								
MCS3006F04			6	6.35								
MCS300608			6	8								
MCS300610			6	10								
MCS300612			6	12								
MCS300614			6	14								
MCS300615			6	15								
MC5300616			6	16								
MCS30F04F04			6.35	6.35								
MC530F0408			0.35	8 10								
MC530F04T0			0.30	0								
MC\$300808			0	10								
MCS300812	30	35	8	10	_	12.5	44.6	6.057×10 ⁻⁶	171 0	0.09	0.9	+1.0
MCS300814	00	00	8	14		(3.0)	1.0	0.007 × 10	171.5	0.05	0.5	0
MCS300815			8	15								
MCS300816			8	16								
MCS301010			10	10								
MCS301012			10	12								
MCS301014			10	14								
MCS301015			10	15								
MCS301016			10	16								
MCS301212			12	12								
MCS301214			12	14								
MCS301414			14	14								
MC5301415			14	15								
MC5301416			14	16								

*Normal Torque of () is the value that is included safety factor (4.2) by the load based on sizing.

		Dimensions								Static			
Model	Outer Diameter _{\$\phi A}	Length W	Shaft Hole Diameter d1H7	Shaft Hole Diameter d2H7	Key	Slot Tolerance b/t	Normal Torque*	Mass	Inertial Moment	Torsion Spring Constant	Permissible Eccentricity	Permissible Declination	Permissible End Play
	mm	mm	mm	mm		mm	N∙m	g	kg·m ²	N·m/rad	mm	deg	mm
MC5400808			8	8									
MCS400810			8	10									
MCS400812			8	12									
MCS400814			8	14									
MCS400815			8	15									
MCS400816			8	16									
MCS400818			8	18									
MCS400820			8	20	1.0	h . 0 0 0105							
MCS401010			10	10	φõ	D:2±0.0125 t ·1 ^{+0.1}							
MCS401012			10	12	-		17.0						+12
MCS401014	40	66	10	14	φ10	b:3±0.0125	(4.0)	139	42.29×10 ⁻⁰	859.5	0.06	0.9	0
MCS401015			10	15		$t:1.4^{+0.1}$							
MCS401016			10	16		b:4+0.015							
MCS401018			10	18		t:1.8 ^{+0.1}							
MCS401020			10	20		L							
MC5401212			12	12	φ14	D:5±0.015 + · · 2 2 ^{+0.1}							
MC5401214			12	14									
MC5401215			12	10	φ15	b:5±0.015							
MC5401210			12	10	-	t:2.3 ^{+0.1}							
MC5401218 MC5401220			12	20	ե16	b · 5+0 015							
MCS551212			12	12	φ.ο	$t : 2.3^{+0.1}_{0}$							
MCS551212			12	14									
MCS551215			12	15	φ18	b:6±0.015 + · 2 8 ^{+0.1}							
MCS551216			12	16		ι.2.0 0							
MCS551218			12	18	φ20	b:6±0.015							
MC\$551220			12	20		t:2.8 ^{+0.1}							
MCS551222			12	22		$b \cdot 6 + 0.015$							
MCS551224			12	24	Ψ	$t : 2.8^{+0.1}_{0}$							
MC\$551414			14	14									
MC\$551415			14	15	φ24	b:8±0.018 t:3.3 ^{+0.2}	<u> </u>						
MC\$551416	55	78	14	16	1	t. J.J 0	60.0 (143)	282	109.1×10 ⁻⁶	2063	0.10	0.9	+1.4
MCS551418			14	18	φ25	b:8±0.018	(14.5)						Ū
MCS551420			14	20]	t:3.3 ^{+0.2}							
MC\$551422			14	22									
MCS551424			14	24									
MCS551518			15	18									
MC\$551618			16	18									
MC\$551818			18	18									
MC5551820			18	20	-								
MC5551822			18	22									
MC\$551824			18	24									

*Normal Torque of () is the value that is included safety factor (4.2) by the load based on sizing.

MCS14

MCS20 Mass: 19.8 g

MCS40 Mass: 139 g

MCS55 Mass: 282 g

Mounting to a Shaft

To mount a flexible coupling to a shaft, choose between set screw type or clamp type according to your application.

Set Screw Type

The set screw type adopts one of the most widely used fastener structures where screws are pushed into the shaft to fix the shaft. However, caution must be exercised because the shaft may be damaged due to direct contact with the screw tip, and removal of the coupling may become difficult. Since the motor shaft has the shaft flat, install the screw point in the surface of shaft flat perpendicularly.

Clamp Type

Clamp couplings use the tightening force of the screw to compress the shaft hole diameter and thereby fasten the coupling to the shaft. This does not damage the shaft and is easy to mount and remove.

The following table shows the screw tightening torque. We recommend using a torque wrench to fasten the coupling.

Туре		MC120C2	MC16C2	MC20 C2	MC25_C2	MC32_C2
Tightening Torque	N∙m	0.5	1	1	1.5	2.5
Туре		MCV15	MCV19	MCV25	MCV30	
Tightening Torque	N∙m	0.25	0.5	1	1.5	
Туре		MCS14	MCS20	MCS30	MCS40	MCS55
Tightening Torque	N∙m	0.37	0.76	1.34	10.5	10.5

Alignment Adjustment

Flexible couplings tolerate misalignment of the axis center and transfer rotational angle and torque, but produce vibration when the permissible value for misalignment is exceeded. This can dramatically shorten the coupling's service life. This requires alignment adjustment.

Misalignment of the axis center includes eccentricity (parallel error of both centers), declination (angular error of both centers) and end play (shaft movement in the axial direction). To keep misalignment within the permissible value, always check and adjust the alignment. To increase the service life of the coupling, we recommend keeping misalignment below 1/3 of the permissible value.

Notes:

When misalignment exceeds the permissible value or excessive torque is applied, the coupling's shape will deform, and service life is shortened.
 When the coupling emits a metallic sound during operation, stop operation immediately and ensure there is no misalignment, axis interference or loose screws.
 When load changes are large, apply an adhesive to the coupling set screw to prevent it from loosening.

Clean Dampers **Rolls**

Mechanical dampers suppress stepping motor vibration and improve high-speed performance. An inertia body and silicon gel are hermetically sealed in a plastic case.

Features

- Excellent vibration absorption
- The doughnut-shaped internal inertia body and silicon gel absorb vibration. This feature enables a stable damping effect.
- Since there is no frictional dust as in conventional magnetic dampers, it can be used in environments where higher degrees of cleanness is needed.
 High reliability
- It holds up well in harsh environments and changes little with age because the silicon gel and plastic case used are heat resistant.
- Machine part is sealed hermetically in a plastic case. This ensures safety and doesn't generate noise.
- •This clean damper is an accessory for double shaft types. It can be used with various geared motors of double shaft type.

Product Line

Model	Inertial Moment kg·m ²	Mass g	Applicable Model
D4CL-5.0F	34×10 ⁻⁷	24	CRK52 PBKD CRK52 PPBKD CRK52 PMBKD CRK52 PMBKD CRK523PBKD-T CRK523PBKD-N CRK523PBKD-H CRK54 PBKD CRK54 PMBKD CRK54 BKD CRK543BKD-T CRK544BKD-N CRK543BKD-H
D6CL-8.0F	140×10 ⁻⁷	61	CRK56 PMBKD CRK56 BKD CRK564BKD-T CRK56 BKD-N CRK564BKD-N

Operating Temperature Range: -20 to +80°C

•Enter the motor case length in the box (
) within the model name. Enter the gear ratio in the box (
) within the model name.

Installation of the Clean Damper

Dimensions (Unit = mm)

Point the mounting screws of the clean damper toward the motor case, fasten to the shaft and tighten the damper's mounting screws (two places) with a hexagonal wrench to secure it to the shaft.

Model	D4CL-5.0F	D6CL-8.0F	
Tightening Torque N·m	0.4	1.5	

Notes:

 There are mounting screws with hexagonal holes in two damper locations, so tighten them both before running the motor.

The damper rotates at the same speed as the motor shaft, so do not touch it while the motor is running.

Model	фd1	фА	φB	С	D	E
D4CL-5.0F	5 ^{+0.018}	ф36±0.5	φ13±0.5	9±0.3	15±0.5	M3
D6CL-8.0F	8 ^{+0.022}	ф44.5±0.5	φ20±0.5	15±0.3	22±0.5	M4

Motor Installation

Mounting Direction

Motors can be mounted freely in any direction as shown below. Regardless of how the motor is mounted, take care not to apply an overhung load or thrust load on the shaft. Make sure the cable does not contact the mounting surface causing undesirable force on the cable.

Notes:

Do not disassemble the motors.Do not apply any shock to the motor.

Installation Conditions

Install the motor in a location that meets the following conditions, or the product may be damaged.

- Indoors (This product is designed and manufactured to be installed within another device.)
- ●Ambient temperature: -10 to +50°C (non-freezing)
- 0 to +40°C (non-freezing): Harmonic geared type
- Ambient humidity: 85% or less (non-condensing)
 Not exposed to explosive, flammable or corrosive gases
- Not exposed to explosive, narmable or conosive gases
 Not exposed to direct sunlight

Not exposed to dust

Not exposed to water or oil

A place where heat can escape easily

•Not exposed to continuous vibration or excessive impact

Notes:

- •When installing the motor in an enclosed space such as a control box, or somewhere close to a heat-radiating object, vent holes should be used to prevent the motor from overheating.
- Do not install the motor in a location where a source of vibration will cause the motor to vibrate.

Mounting Method

Considering heat radiation and vibration isolation as much as possible, mount the motor tightly against a metal plane.

◇Mounting Method for Through Hole Type

\Diamond Thickness of the Mounting Plate for Through Hole Type

T		
Model	Thickness of the Mounting Plate	
CRK564_KD CRK566_KD CRK569_KD CRK56_PM_KD CRK56_RKD CRK56_AMKD	5 mm min.	

●Enter A (single shaft) or B (double shaft) in the box (□) within the model name. ●Enter the motor case length in the box (□) within the model name.

◇Mounting Method for Tapped Hole Type

♦ Thickness of the Mounting Plate for Tapped Hole Type

Model	Thickness of the Mounting Plate
CRK513P KD	2 mm min.
CRK523P_KD, CRK525P_KD CRK523HP_KD, CRK525HP_KD CRK523PM_KD, CRK524PM_KD CRK525PM_KD, CRK524PM_KD CRK525PM_KD, CRK523HPM_KD CRK544PM_KD, CRK525HPM_KD CRK543_KD, CRK544_KD CRK544_PRKD CRK545_KD, CRK544P_KD CRK546P_KD, CRK544PM_KD CRK546PM_KD, CRK513P_KD-H_	3 mm min.
CRK523P□KD-T■ CRK523P□KD-N■	4 mm min.
CRK523P□KD-H □ CRK543□KD-T □ , CRK544□KD-N □ CRK543□KD-H □ , CRK564□KD-T □	5 mm min.
CRK564 KD-N, CRK566 KD-N CRK564 KD-H	8 mm min.

 $\bullet \mathsf{Enter}~\mathbf{A}$ (single shaft) or \mathbf{B} (double shaft) in the box (\Box) within the model name.

Enter the gear ratio in the box (
) within the model name.

Enter the motor case length in the box (\square) within the model name.

Driver Installation

Installation Direction

Drivers are designed to dissipate heat through natural convection. Install the driver vertically as shown in the photograph.

Using Multiple Axes

There must be a clearance of at least 50 mm in the horizontal and vertical directions respectively, between the driver and enclosure or other equipment.

When mounting two or more drivers, separate them by a space of at least 20 mm and 50 mm in the horizontal and vertical directions. However, you can install closely CRD503-KD, CRD507-KD and CRD507H-KD horizontally.

◇CRD514-KD

◇CRD503-KD, CRD507-KD, CRD507H-KD

Installation Method

•Use DIN rails with a width of 35 mm. •Use end plate for fixing the driver.

•The DIN rail and end plate are not included.

Installation Conditions

Install the driver in a location that meets the following conditions, or the product may be damaged.

- Inside an enclosure installed indoors (with ventilation holes provided)
- Not exposed to an explosive atmosphere, toxic gases (sulfurized gas etc.) or liquids
- Not exposed to direct sunlight
- Not exposed to significant amounts of dust or iron powder
- Not exposed to water (rain, water droplets), oil (oil droplets) or other liquids
- Not exposed to air having high salt content
- Not exposed to continuous vibration or excessive impact
- •Not subjected to significant electromagnetic noise caused by welding machines, power equipment etc.
- Not exposed to radioactive materials, magnetic field or vacuum conditions

This product is manufactured at a plant certified with the international standards ISO 9001 (for quality assurance) and ISO 14001 (for systems of environmental management).

Specifications are subject to change without notice. This catalogue was published in July, 2010.

www.orientalmotor.it

Oriental motor

ORIENTAL MOTOR (EUROPA) GmbH

www.orientalmotor.de European Headquarters and Düsseldorf Office

Schiessstraße 74 40549 Düsseldorf, Germany Tel: +49-211-5206700 Fax: +49-211-52067099

Munich Office

Carl-von-Linde-Straße 42 85716 Unterschleißheim, Germany Tel: +49-89-3181225-00 Fax: +49-89-3181225-25

Hamburg Office

Meckelfelder Weg 2 21079 Hamburg, Germany Tel: +49-40-76910443 Fax: +49-40-76910445

Jena Office

Wildenbruchstraße 15 07745 Jena, Germany Tel: +49-3641-675280

Stuttgart Office

Fax: +49-7335-924854 Tel: +49-7335-924853

ORIENTAL MOTOR (UK) LTD.

www.oriental-motor.co.uk

Unit 5 Faraday Office Park Rankine Road, Basingstoke Hampshire RG24 8AH, U.K. Tel: +44-1256-347090 Fax: +44-1256-347099

ORIENTAL MOTOR (FRANCE) SARL

www.orientalmotor.fr

France Headquarters

32, Avenue de l'ile Saint Martin 92737 Nanterre Cedex, France Tel: +33-1 47 86 97 50 Fax: +33-1 47 82 45 16

Lyon Office

10, Allée des Sorbiers 69673 Bron Cedex, France Tel: +33-4 78 41 15 02 Fax: +33-4 78 41 15 90

ORIENTAL MOTOR ITALIA s.r.l.

Italy Headquarters

Via A. De Gasperi, 85 20017 Mazzo di Rho (MI), Italy Fax: +39-2-93906348 Tel: +39-2-93906346

Bologna Office

Via mori 6 40054 Prunaro di Budrio (BO), Italy Tel: +39-51-6931249 Fax: +39-51-6929266

Verona Office

Piazza Roma, 3A 37066 Sommacampagna (VR), Italy Tel: +39-45-8961049 Fax: +39-45-8971978

Customer Center (Support in German & English)

Fax: +49-3641-675288

00800 22 55 66 22* Mon-Thu: 08:00-17:30 CET Friday: 08:00-16:00 CET * Free Call Europe CA LL OM CC

Mail to: tech@orientalmotor.de

SINGAPORE ORIENTAL MOTOR PTE LTD

www.orientalmotor.com.sg 31 Kaki Bukit Road 3, #04-02/04 Techlink, Singapore 417818 Tel: +65-6745-7344 FAX: +65-6745-9405

ORIENTAL MOTOR (MALAYSIA) SDN. BHD.

Kuala Lumpur, Malaysia

Penang Office

Tel: +60-4-6423788

Fax: +60-4-6425788

Customer Support Centre (Support in English & Chinese)

For Singapore: 1800-842 0280* * Free Call Mon-Fri: 09:00-17:30 Singapore Time For Malaysia: 1800-806 161* * Free Call For Other Countries: +65-6842-0280 Mail to: support@orientalmotor.com.sg

Japanese Customer Support Centre (Asia and Oceania Areas)

Mon-Fri: 09:00-17:30 Singapore Time +65-6745-3008Mail to: j-support@orientalmotor.com.sg

ORIENTAL MOTOR CO., LTD.

www.orientalmotor.co.jp

For more information please contact:

Headquarters

6-16-17 Ueno, Taito-ku, Tokyo 110-8536, Japan Tel: +81-3-3835-0684 Fax: +81-3-3835-1890

©Copyright ORIENTAL MOTOR CO., LTD. 2010

This printed material uses ECF (Elementary Chlorine Free) paper and soy inks.

ORIENTAL MOTOR (THAILAND) CO., LTD.

www.orientalmotor.co.th 900, 8th Floor Zone C, Tonson Tower, Ploenchit Road, Lumpini, Pathumwan, Bangkok 10330 Thailand Tel: +66-2-251-1871 Fax: +66-2-251-1872

www.orientalmotor.com.my Headquarters & Kuala Lumpur Office A-13-1, North Point Offices, Mid Valley City, No. 1 Medan Sved Putra Utara 59200

Tel: +60-3-22875778 Fax: +60-3-22875528

This combination is environmentally friendly.