Selection Calculations for Motorized Actuators

Motorized Linear Slides and Cylinders

Select from the EZSII Series, EZSII Series for Cleanroom Use, EZCII Series

First determine your series, then select your model.
Select the actuator that you will use based on the following flow charts:

1. Determine the Actuator Type
 Select the actuator type that you will use.
 (Linear slide type and cylinder type)

2. Check the Actuator Size and Transport Mass
 Select the cylinder and linear slide size that satisfies your desired conditions. (Check the frame size, table height, transport mass and thrust force.)

3. Check the positioning time
 Check whether your desired positioning time is sufficient using the "Positioning Distance – Positioning Time" graph.
 As a reference, the positioning time by the linear slide corresponds to the positioning time calculated from the graph, multiplied by the "positioning time coefficient" corresponding to the applicable stroke.

4. Check the Operating Conditions
 Check that the operating speed and acceleration satisfy the conditions using the "Positioning Distance – Operating Speed" and "Positioning Distance – Acceleration" graphs.

5. Check the Moment (Linear slide only)
 Take into account the calculated acceleration conditions and check that the dynamic permissible moment applied to the motorized linear slide is not exceeded. Refer to the following page for the moment calculation methods.

Selection complete

Example: Check of the operating speed and acceleration in order to execute the positioning time and this operation at a positioning distance of 300 mm.

- Positioning Distance – Positioning Time (Horizontal)
- Positioning Distance – Operating Speed (Horizontal)
- Positioning Distance – Acceleration (Horizontal)

*Check the Oriental Motor website.
Calculating Load Moment

When a load is transported with the motorized linear slides, the load moment acts on the linear guide if the load position is offset from the center of the table. The direction of action applies to three directions, (pitching (M_P), yawing (M_Y), and rolling (M_R)) depending on the position of the offset.

![Diagram of Linear Slide and Load Moment](image)

Even though the selected actuator satisfies the transport mass and positioning time, when the fixed load is overhung from the table, the run life may decrease as a result of the load moment. It is necessary to check if load moment calculations are not done, and if conditions are within the specified values. Check the moment applied under static conditions with the static permissible moment, and the moment applied under movement with the dynamic permissible moment.

Calculate the load moment of the linear slide based on loads. Check that the static permissible moment and dynamic permissible moment are within limits and check that strength is sufficient.

![Diagram showing Load Moment](image)

- **Load Moment Formula:**
 \[
 \left| \frac{\Delta M_P}{M_P} \right| + \left| \frac{\Delta M_Y}{M_Y} \right| + \left| \frac{\Delta M_R}{M_R} \right| \leq 1
 \]

 When there are several overhung loads, etc., this equation determines the moment from all loads.

 - **For Multiple Loads (n)**
 \[
 \left| \frac{\Delta M_{P1}}{M_P} + \Delta M_{P2} + \cdots + \Delta M_{Ph} \right| + \left| \frac{\Delta M_{Y1}}{M_Y} + \Delta M_{Y2} + \cdots + \Delta M_{Yh} \right| + \left| \frac{\Delta M_{R1}}{M_R} + \Delta M_{R2} + \cdots + \Delta M_{Rh} \right| \leq 1
 \]
Concept of Static Moment Application
Check the static permissible moment when the load moment is applied to the stopped linear slide and compare it with the static permissible moment or the maximum load moment.

![Diagram of linear guide with load center of gravity and moment conditions](image)

Concept of Dynamic Moment Application
When the load moment is applied during linear slide operation, take into account the acceleration and check that the dynamic moment is not exceeded and compare it with the dynamic permissible moment or the maximum load moment.

![Diagram of linear guide with load center of gravity and moment conditions](image)

The linear guide of the linear slide is designed with an expected life of respective series' reference values. However, when the load factor of the load moment for the calculated static and dynamic permissible moment or maximum load moment is 1 or more, the expected life distance is below. How much of the expected life distance can be checked in the formula below.

\[
\text{Expected life (km)} = \text{References on service life of each series} \times \left(\frac{1}{\frac{\Delta M_r}{M_r} + \frac{\Delta M_t}{M_t} + \frac{\Delta M_x}{M_x}} \right)^3
\]

*For references on service life of each series, refer to page H-29 "Concept of Service Life."

Table 1: Load Conditions

<table>
<thead>
<tr>
<th>Load Condition</th>
<th>Moment Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>(\frac{\Delta M_r}{M_r} \leq 1)</td>
</tr>
<tr>
<td>Dynamic</td>
<td>(\frac{\Delta M_t}{M_t} + \frac{\Delta M_x}{M_x} \leq 1)</td>
</tr>
</tbody>
</table>

Table 2: Load Condition Diagrams

- **Horizontally**: Loading along the center of gravity's horizontal direction.
- **Vertically**: Loading along the center of gravity's vertical direction.
- **Diagonally**: Loading along the center of gravity's diagonal direction.

Formulas:
- For static loading: \(\frac{\Delta M_r}{M_r} \leq 1 \)
- For dynamic loading: \(\frac{\Delta M_t}{M_t} + \frac{\Delta M_x}{M_x} \leq 1 \)
Selection of Dual Axis Installation Brackets from the EZSII Series

This section is about selecting a dedicated EZSII Series dual axis installation bracket. Select a dual axis combination from the EZSII Series that meets your requirements, then select a dual axis installation bracket for these requirements. Following the flow chart while checking the conditions will allow you to select the ideal combination.

Selection Flow Chart

1. Check conditions
2. Select combinations of motorized linear slides
3. Check the acceleration
4. Check the operating speed
5. Check the positioning time
6. Make selection

Select the motorized linear slides combinations from the "Transportable Mass per Acceleration" table, and determine the required dual axis installation bracket for these combinations.

Calculate the acceleration from the "Transportable Mass per Acceleration" table, and check the speed of each shaft from the Speed – Transportable Mass graph.

Calculate the positioning time. Check whether or not your desired positioning times are sufficient.

Selection Example

Follow the flow chart and select a dual axis installation bracket based on the following conditions:

Condition
Transports 2.5 kg a distance of 125 mm in 0.5 s with X-Y installation
A moving range of 500 mm for the X-axis and 250 mm for the Y-axis
The center of gravity of the load for the Y-axis is (G1, G2, G3) = (45, 20, 25)
Power supply voltage is single-phase 220 VAC

(1) Select the Linear Slide Combinations and Dual Axis Installation Bracket

Check the motorized linear slides combinations from the "Transportable Mass per Acceleration" table. (Refer to Page H-23.) The absolute value within G1, G2 and G3 is calculated as the largest value. Under these conditions, since |G1| = 45 is the maximum value, refer to the table of the center of gravity condition 30 < |Gn| ≤ 50.

The linear slide combinations that have a transportable mass of 2.5 kg with a stroke of 250 mm are as follows:

- **Combination 1:** X-Axis: EZS6D Y-Axis: EZS3D
- **Combination 2:** X-Axis: EZS6D Y-Axis: EZS4D

For smaller sized products, select "Combination 1."

The following products were tentatively selected:

- X-Axis: EZS6D050-C
- Y-Axis: EZS3D025-C

Tentatively select EZS6D for the first axis and EZS3D for the second axis. The combination pattern (refer to page E-97) for a 250 mm second axis stroke is an R Type. As a result, the required dual axis installation bracket will be PAB-S6S3R025.

(2) Check the Acceleration of the Linear Slide

Check the acceleration from the "Transportable Mass per Acceleration" table. The maximum acceleration with a transportable mass of 2.5 kg will be 5 m/s².
(3) Check the Operating Speed of the Linear Slide

Check the “Speed – Transportable Mass Characteristics” graph. (Refer to page H-24.)

Draw a horizontal line indicating the 2.5 kg transportable mass of the Y-axis. The point at which this line and the acceleration line at 5 m/s² intersect will be the maximum speed (upper limit) of dual axis combination.

- X-Axis Speed: 460 mm/s or less
- Y-Axis Speed: 560 mm/s or less

If using the combinable linear slides with greater size, the speed and acceleration can be improved despite having the same transportable mass.

(4) Check the Positioning Time

Easily calculate the positioning time, and check whether your desired positioning time is sufficient.

The friction formula is as follows:

\[
V_{\text{max}} = \sqrt{L \cdot a \times 10^{3}}
\]

- \(V_{\text{max}} \): Positioning distance [mm]
- \(L \): Operating speed [mm/s]
- \(a \): Acceleration [m/s²]
- \(T \): Positioning time [s]

\[
T = \frac{2 \cdot V_{\text{max}}}{a \times 10^{3}} \quad \text{or} \quad T = \sqrt{\frac{L}{a \times 10^{3}}} \times 2
\]

\[
T = \frac{L}{V_{\text{max}}} + \frac{V_{\text{max}}}{a \times 10^{3}}
\]

Example of Calculation

Try to check whether the 100 mm positioning distance at 0.5 second for the combinations on page H-21 can be moved.

X-Axis: EZS6D050-C

- Speed: 780 mm/s
- Acceleration: 5 m/s²
- Positioning distance: 125 mm

Check the operating pattern

\[
V_{\text{max}} = \sqrt{125 \times 5 \times 10^{3}} = 791 \geq V_{S} \quad \text{Trapezoidal Drive}
\]

Calculate the positioning time

\[
T = \frac{125}{780} + \frac{780}{5 \times 10^{3}} = 0.316 \text{ s}
\]

Y-Axis: EZS3D025-C

- Speed: 800 mm/s
- Acceleration: 5 m/s²
- Positioning distance: 125 mm

Check the operating pattern

\[
V_{\text{max}} = \sqrt{125 \times 5 \times 10^{3}} = 791 \geq V_{S} \quad \text{Trapezoidal Drive}
\]

Calculate the positioning time

\[
T = \frac{2 \times 800}{5 \times 10^{3}} = 0.320 \text{ s}
\]

The results of the calculation enable you to check that your desired positioning times are sufficient.
Transportable Mass per Acceleration

X-Y Installation

<table>
<thead>
<tr>
<th>Y-Axis Transportable Mass [kg]</th>
<th>Stroke [mm]</th>
<th>Stroke [mm]</th>
<th>Stroke [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Axis: EZS4D</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Y-Axis: EZS3D</td>
<td>2.3</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Gn</td>
<td>30 [mm]</td>
<td>30</td>
<td>0.3</td>
</tr>
</tbody>
</table>

X-Z Installation

<table>
<thead>
<tr>
<th>Z-Axis Transportable Mass [kg]</th>
<th>Stroke [mm]</th>
<th>Stroke [mm]</th>
<th>Stroke [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Axis: EZS4D</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Z-Axis: EZS3D</td>
<td>2.3</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>Gn</td>
<td>30 [mm]</td>
<td>30</td>
<td>0.3</td>
</tr>
</tbody>
</table>

● Gn is the distance [mm] from the table to the center of gravity of the load.

Please contact the nearest Oriental Motor sales office or visit our Website for details.

CAD Data, Manuals
Technical Support

H-23
Selection Calculations / Motorized Actuators

Speed – Transportable Mass Characteristics

X-Axis Speed (Common to the electromagnetic brake type)
- Single-Phase 100-115 VAC/Single-Phase 200-230 VAC

<table>
<thead>
<tr>
<th>EZS4D □(M)-A/EZS4D □(M)-C</th>
<th>EZS6D □(M)-A/EZS6D □(M)-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A number indicating the stroke is specified in the box □ in the product name.
- For the X-axis, the maximum speed checked in the graph is limited by the stroke. Check the maximum speed of each stroke for the EZS□ Series.

Y-Axis Speed (Common to the electromagnetic brake type)
- Single-Phase 100-115 VAC/Single-Phase 200-230 VAC

<table>
<thead>
<tr>
<th>EZS3D □(M)-A/EZS3D □(M)-C</th>
<th>EZS4D □(M)-A/EZS4D □(M)-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Z-Axis Speed (Common to the electromagnetic brake type)
- Single-Phase 100-115 VAC/Single-Phase 200-230 VAC

<table>
<thead>
<tr>
<th>EZS3D □(M)-A/EZS3D □(M)-C</th>
<th>EZS4D □(M)-A/EZS4D □(M)-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A number indicating the stroke is specified in the box □ in the product name.

[Image of Graphs and Tables]
Selecting Motorized Linear Slides and Cylinders (Obtaining by calculations)

As illustrated below, the parameters listed below are required when selecting a motorized linear slide and motorized cylinder for transporting a load from A to B.

The required parameters are as follows:
- Mass of load (m) or thrust force (F)
- Positioning distance (L)
- Positioning time (T)
- Repetitive positioning accuracy
- Maximum stroke

Among the parameters above, the thrust force and positioning time can be calculated using the equations below.

Calculate the Thrust Force
1. Calculate the required thrust force when accelerating the load
 \[F_a = m \left(g + a \sin \theta + \mu \cos \theta \right) \]
2. Calculate the thrust force that allows for pushing and pulling
 \[F = F_{max} - F_a \]

If the external force of the load is smaller than \(F \), push and pull are possible.

\(F_{max} \): Maximum thrust force of the motorized linear slides and cylinders [N]
\(F_a \): Required thrust force during acceleration/deceleration operation [N]
\(m \): Mass of the load on the table and rod [kg]
\(g \): Gravitational acceleration 9.807 [m/s²]
\(\mu \): Friction coefficient 0.01 (Friction coefficient of the guide supporting the load for motorized linear slides)
\(\theta \): Angle formed by the traveling direction and the horizontal plane

Calculate the Positioning Time

1. Check the operating conditions
 Check the following conditions:
 - Installation direction, load mass, positioning distance, starting speed, acceleration, operating speed

2. Check whether the drive pattern is the triangular drive or trapezoidal drive from the above operating conditions.
 For the triangular drive, calculate the maximum speed from the positioning distance, starting speed, acceleration and operating speed. If the calculated maximum speed is below the operating speed, the drive pattern will be a triangular drive. If the calculated maximum speed exceeds the operating speed, the drive pattern will be a trapezoidal drive.

 \[V_{Rmax} = \sqrt{\frac{2 \cdot m \cdot a + L}{a_1 + a_2} - 10^3 + V_0^2} \]
 \[V_{Rmax} < V_0 \rightarrow \text{Triangular Drive} \]
 \[V_{Rmax} > V_0 \rightarrow \text{Trapezoidal Drive} \]

3. Calculate the positioning time
 - Triangular Drive
 \[T = T_1 + T_2 + T_3 \]
 \[= \frac{V_0 - V_a}{a_1 \times 10^3} + \frac{V_a - V_s}{a_2 \times 10^3} + \frac{L}{V_s \times 2} \times \frac{(a_1 + a_2) \times (V_s^2 - V_a^2)}{a_1 \times a_2 \times V_s \times 10^3} \]
 - Trapezoidal Drive
 \[T = T_1 + T_3 \]
 \[= V_{Rmax} - V_a + \frac{V_{Rmax} - V_s}{a_1 \times 10^3} \]

The actual operating time is subject to a small margin of error, so use the calculation only as a reference.

Other conversion formulas are explained below.
The pulse speed and operating speed can be converted using the equation below. Keep the operating speed below the specified maximum speed.

\[\text{Pulse Speed [Hz]} = \frac{\text{Operating Speed [mm/s]}}{\text{Resolution [mm]}} \]

The number of operating pulses and traveling amount can be converted using the equation below.

\[\text{Number of operating pulses [pulses]} = \frac{\text{Traveling amount [mm]}}{\text{Resolution [mm]}} \]

The acceleration/deceleration rates and acceleration can be converted using the equation below.

\[\text{Acceleration/deceleration rate [ms²/kHz]} = \frac{\text{Resolution [mm]} \times 10^3}{\text{Acceleration [m/s²]}} \]

The input methods for speed, traveling amount and acceleration will vary depending on the controller. Perform each calculation using the methods appropriate to the controller.
Compact Linear Actuators

Selecting the DRL Series
As illustrated below, the parameters listed below are required when selecting an actuator for transporting a load from A to B.

![Image of actuator](Load: A, B, Guide)

The required parameters are as follows:
- Mass of load (m) or thrust force (F)
- Positioning distance (L)
- Positioning time (T)

Among the parameters above, the thrust force and positioning time can be calculated using the equations below.

- **Calculate the Thrust Force**
 1. Calculate the required thrust force when accelerating the load
 \[F_a = m \left(a + g \sin \theta + \mu \cos \theta \right) \]
 2. Calculate the thrust force that allows for pushing or pulling
 \[F = F_{\text{max}} - F_a \]

If the external force of the load is smaller than \(F \), push and pull are possible.

- **Calculate the Positioning Time**
 Check whether the actuator can perform the necessary positioning within the specified time. This can be done by obtaining a rough positioning time from the graph or by obtaining an accurate positioning time by calculation. Respective check procedures are explained below.

The actual operating time is subject to a small margin of error, so use the calculation only as a reference.

Obtaining from a Graph
Example. Perform positioning over a distance of 20 mm within 1.0 second using DRL42PA2-04 (tentative selection). Transporting mass is 5 kg in vertical drive.

Check the graph of DRL42.

![Graph](Positioning Time vs Positioning Distance)

Based on the above graph, the load can be positioned over 20 mm within 1.0 second.

Obtaining by Calculations

1. Check the operating conditions
 Check the following conditions:
 - Installation direction, load mass, positioning distance, starting speed, acceleration, operating speed

2. Check whether the drive pattern is the triangular drive or trapezoidal drive from the above operating conditions.
 For the triangular drive, calculate the maximum speed from the positioning distance, starting speed, acceleration and operating speed. If the calculated maximum speed is below the operating speed, the drive pattern will be a triangular drive. If the calculated maximum speed exceeds the operating speed, the drive pattern will be a trapezoidal drive.

 \[V_{\text{max}} = \sqrt{\frac{2 \times a \times V_a - L}{a_1 + a_2} - \frac{a_1 a_2}{a_1 a_2}} \times 10^3 + V_s^2} \]

 \[V_{\text{max}} \geq V_s \rightarrow \text{Triangular Drive} \]

 \[V_{\text{max}} > V_s \rightarrow \text{Trapezoidal Drive} \]

3. Calculate the positioning time
 - **Trapezoidal Drive**
 \[T = T_1 + T_2 + T_3 = \frac{V_s - V_a}{a_1 \times 10^3} + \frac{L}{V_s} \times \frac{a_1 + a_2}{2 \times a_1 \times a_2} \times (V_s^2 - V_a^2) \]
 - **Triangular Drive**
 \[T = T_1 + T_2 = \frac{V_{\text{max}} - V_a}{a_1 \times 10^3} + \frac{V_{\text{max}} - V_s}{a_1 \times 10^3} \]

Pattern 1

- **Pattern 2**

\(V_{\text{max}} \): Calculated maximum speed of triangular drive [mm/s]
\(V_s \): Operating speed [mm/s]
\(V_a \): Starting speed [mm/s]
\(L \): Positioning distance [mm]
\(a_1 \): Acceleration [m/s²]
\(a_2 \): Deceleration [m/s²]
\(T \): Positioning time [s]
\(T_1 \): Acceleration time [s]
\(T_2 \): Deceleration time [s]
\(T_3 \): Constant speed time [s]
Hollow Rotary Actuators

Selecting the DGII Series
This section describes the selection calculations for DGII Series.

- Calculate the Required Torque
 ① Calculate the inertia (load inertia) of the load.
 For the inertia of load, use 30 times or less of the actuator inertia as reference.

 ② Determine the positioning angle.

 ③ When there is no friction torque, check the positioning time from the Load Inertia – Positioning Time graph for the DGII Series. Refer to page E-153 for the Load Inertia – Positioning Time graph.

 ④ Determine the positioning time and acceleration/deceleration time.

 Provided that:
 The Positioning Time ≥ The Lowest Calculated Positioning Time Based on The Graph of Load Inertia – Positioning Time
 where, Acceleration/Deceleration Time \(t_1 \times 2 \leq \) Positioning Time

 ⑤ Determine starting speed \(N_1 \), and calculate the operating speed \(N_2 \) using the formula below. Set \(N_1 \) to low-speed [0 to \(n \) r/min], and do not set it more than the required speed.

 \[
 N_1 = \frac{\theta - 6N_2}{6} \frac{N_2}{t_1} + N_1
 \]

 \(N_2 \): Operating speed [r/min]
 \(\theta \): Positioning angle [˚]
 \(N_1 \): Starting speed [r/min]
 \(t \): Positioning angle [˚]

 If \(N_1 \leq N_2 \leq 200 \) [r/min] is not correct using the above equation, return to step ④, and recheck the conditions.

 ⑥ Calculate the acceleration torque using the equation below.

 \[
 T_a = (J_1 + J_2) \times \frac{\theta}{60} \times \frac{(N_1 - N_2)}{t_1}
 \]

 \(T_a \): Acceleration torque [N-m]
 \(J_1 \): Actuator inertia [kg-m²]
 \(J_2 \): Total inertia [kg-m²]
 \(N_2 \): Operating speed [r/min]
 \(N_1 \): Stating speed [r/min]
 \(t_1 \): Acceleration (deceleration) time [s]

 ⑦ Calculate the required torque. The required torque is calculated by multiplying load torque of the frictional resistance plus the acceleration torque of the inertia by the safety factor.

 \[
 T = T_a + T_e \times S_f
 \]

 \(T \): Required torque [N-m]
 \(T_e \): Load Torque [N-m]
 \(T_a \): Acceleration torque [N-m]
 \(S_f \): Safety factor

 Keep the safety factor \(S_f \) at 1.5 or more.